
 

Project Governance & Controls Annual Review 

2020 / 2021 
 

1 

 

 

 

 

 

 

ISSN  2652-1016 (Online) 

Volume 4, Edition 1. Published 23rd September 2021 

 

Modelling Risk Interdependencies to Support Decision Making in 

Project Risk Management: Analytical and Simulation-based Methods 

 

Li Guan, PhD candidate – School of Engineering and Information Technology, UNSW, Canberra, 

Australia. li.guan1@student.adfa.edu.au  Corresponding Author.  

Dr. Alireza Abbasi, Director of Postgraduate Studies and Senior Lecturer, School of Engineering and 

Information Technology, UNSW, Canberra, Australia. 

Prof. Michael J. Ryan, Director of Capability Associates Pty Ltd, Canberra, Australia.  

  

Abstract 

Project risks are mostly considered to be independent, ignoring the interdependencies among them, 

which can lead to inappropriate risk assessment and reduced efficacy in risk treatment. The purpose 

of this research is to investigate how cause-effect relationships among project risks influence risk 

assessment results and to develop comprehensive network-based risk indicators which allow project 

managers to identify critical risks and important risk interdependencies more effectively. This study 

establishes three analytical methods-based project risk assessment models, namely, a Fuzzy Bayesian 

Belief Network-based risk assessment model, an Interpretive Structural Modeling-MICMAC analysis-

based risk assessment model, and a Social Network Analysis-based risk assessment model. In addition, 

one simulation-based project risk assessment model, i.e., the Monte Carlo Simulation-based risk 

interdependency network model, is developed to capture the stochastic behavior of project risk 

occurrence when modeling risk interdependencies. Case studies are provided to illustrate the 

application of the proposed project risk assessment models. The research findings have highlighted 

the importance of considering risk interdependencies in project risk assessment and verified the 

performance of the proposed models in practical use. 

Keywords: Project risk assessment, Risk interdependency, Fuzzy Bayesian Belief Network, Interpretive 

Structural Modeling, Social Network Analysis, Monte Carlo Simulation.  
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1. Introduction 

The successful delivery and operation of projects remains a critical issue for contemporary project-

driven organizations. As projects are potentially plagued with diverse risks and face a growing 

complexity from both internal (e.g., organizational, and technical aspects) and external (e.g., 

economic, social, and environmental aspects) (Fang & Marle, 2012), effective project risk management 

is of great importance for creating a proactive environment and achieving project objectives, such as 

to avoid budget overruns, schedule delays, quality deficiencies, and lower reputation (Guan, Abbasi, 

et al., 2020). Risk management is a formal and fundamental process to improve project performance 

by mitigating or controlling the consequences of risks associated with project objectives (El-Sayegh, 

2008; Islam et al., 2017), usually including risk assessment (involving risk identification, risk analysis, 

and risk evaluation), risk treatment, and risk monitoring and review throughout a project life cycle 

(BSI, 2018). Among these phases, risk assessment is a very essential activity that allows project decision 

makers to have an overall risk perception of a project (at an early phase or during its implementation) 

and therefore to make appropriate risk response decisions proactively. 

In real-world situations, project risks are interdependent, meaning there are cause-effect relationships 

among risks, where an identified risk is likely to trigger the occurrence of one or more other risks 

(Guan, Abbasi, et al., 2020; Marle & Vidal, 2008; Wang et al., 2019). These project risk 

interdependencies can result in a propagation from one upstream risk to numerous downstream risks, 

or a situation that one downstream risk arises from the occurrence of several upstream risks. If the 

effects of risk interdependencies are not considered and treated in project risk management, the 

occurrence of one risk can aggravate the probability or impact of other related risks over the course 

of a project lifecycle, even leading to domino effects which can threaten the final project results 

(Hwang et al., 2016). 

The classical Probability–Impact (P–I) risk model, assessing project risks purely through their 

probability of occurrence and corresponding impact on project objectives (if the risks occur) with the 

assumption that risks are independent from their environment, has been gradually extended and 

incorporated additional parameters to reflect the complexity of projects (Aven, 2016; Taroun, 2014). 

Researchers have investigated various theories, tools, and techniques for aiding project risk 

assessment. Network-based risk assessment methods, where nodes and directed edges represent 

project risks and risk interdependencies, respectively, are more capable of modeling complex 

interdependencies among project risks than the classical P–I risk model (Marle et al., 2013; Yang & 

Zou, 2014). In such methods, the evaluation of a given risk is based on the risks which can trigger it 

directly or indirectly within a risk interdependency network (RIN). However, the existing studies into 

applying the RIN to project risk management are still limited and needs to be improved by analyzing 

multiple characteristics of risks (e.g., stochastic behavior, risk loops, and risk position within a 

network). Therefore, developing effective risk assessment methods is pivotal to better reflect actual 

project risk conditions and to provide decision makers with more objective, repeatable, and visible 

decision-making support for project risk management. 

The main objective of this research is to develop comprehensive and effective risk assessment 

indicators that can better reflect actual project risk conditions to provide project risk management 

practitioners with more objective, repeatable, and visible decision-making support for project risk 

management. To achieve this objective, three main questions should be solved –– Q1: How to 

represent cause-effect relationships among project risks (i.e., risk interdependencies)? Q2: How to 
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consider the risk stochastic behaviour, risk loops, and risk position in network-based project risk 

assessment? Q3: What risk indicators considering risk interdependencies can be developed using 

analytical methods and simulation-based methods, respectively? 

The remainder of this paper is structured as follows. Section 2 provides an overview of the existing 

research on modeling project risks. Section 3 introduces the research methodology of developing 

project risk assessment models based on analytical and simulation-based approaches. Case studies of 

the applications of proposed risk assessment models and corresponding computational results are 

demonstrated in Section 4. The implications of this study are discussed in Section 5. Section 6 presents 

conclusions and future work. 

 

2. Literature Review 

According to whether or not risk interdependencies are considered in project risk assessment, existing 

project risk assessment methods can be classified into two main groups: assuming risks are 

independent and considering risk interdependencies (as shown in Table 1). 

Table 1. Examples of existing project risk assessment methods. 

 Existing project risk assessment 

methods 
References 

Assuming risks are independent Classical P–I risk model BSI, 2018; PMI, 2017 

Analytical Hierarchy Process (AHP) Wang et al., 2016 

Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) 
Zavadskas et al., 2010 

Fuzzy Synthetic Evaluation (FSE) Islam et al., 2017; Zhao et al., 2016 

Monte Carlo Simulation (MCS) Sadeghi et al., 2010 

Considering risk interdependencies Fault Tree Analysis (FTA) Shoar et al., 2019 

Bayesian Belief Network (BBN) Hu et al., 2013; Ojha et al., 2018 

Structural Equation Modeling (SEM) Ahmadabadi & Heravi, 2019 

Design Structure Matrix (DSM) Marle & Vidal, 2008 

Social Network Analysis (SNA) Yang et al., 2016; Yang & Zou, 2014 

Interpretive Structural Modeling (ISM) Kwak et al., 2018 

 

In most cases, project risk management practitioners usually develop a two-dimensional risk matrix 

given the classical P–I risk model as a tool to assess and categorize individual project risks (BSI, 2018; 

PMI, 2017). Gradually, many complex methods have been developed to improve the classical P–I risk 

model in assessing project risks. For example, Multi-criteria Decision Making (MCDM) methods are 

introduced such as Analytical Hierarchy Process (AHP) (Wang et al., 2016) and Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) (Zavadskas et al., 2010). The Fuzzy Set Theory (FST), 

first introduced by Zadeh (1965), is usually combined with the MCDM methods during the project risk 

assessment to handle the uncertainties of risk data due to the imprecision, vagueness and subjectivity 

of human thoughts. As an application of the FST, the Fuzzy Synthetic Evaluation (FSE) method can deal 

with complicated risk evaluations with multiple levels and attributes and is able to represent empirical 

knowledge of practitioners (Islam et al., 2017; Zhao et al., 2016). However, the main limitation with 

adopting these analytical methods during project risk assessment is that they just assess project risks 

individually while ignoring their interdependencies, which can lead to the inevitable underestimation 

of project risks to some extent. 

To incorporate risk interdependencies in project risk assessment, many researchers have proposed 

more sophisticated approaches and frameworks, including Fault Tree Analysis (FTA) (Shoar et al., 
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2019), Bayesian Belief Network (BBN) (Hu et al., 2013; Ojha et al., 2018), Structural Equation Modeling 

(SEM) (Ahmadabadi & Heravi, 2019), Design Structure Matrix (DSM) (Marle & Vidal, 2008), Social 

Network Analysis (SNA) (Yang et al., 2016; Yang & Zou, 2014), and Interpretive Structural Modeling 

(ISM) (Kwak et al., 2018). For instance, Shoar et al. (2019) proposed a Fault Tree (FT)-based approach 

for quantitative risk analysis in the construction industry that can consider both objective (aleatory) 

and subjective (epistemic) uncertainties; Hu et al. (2013) proposed a BBN-based model with causality 

constraints to discover the causality between risk factors and project outcomes in software projects; 

Ahmadabadi and Heravi (2019) developed a risk assessment framework in public private partnership 

megaprojects based on SEM method to rank risks focusing on risk interactions and to identify critical 

risk paths that can be used to offer proper risk responses; Marle and Vidal (2008) explored the DSM 

principles and defined a binary risk structure matrix to represent project risk interactions; Yang et al. 

(2016) built an SNA-based risk model that is capable of analyzing stakeholder associated risks and their 

interrelationships in complex green building projects; and Kwak et al. (2018) investigated the 

interactions between international logistics risks within the prevailing structures of international 

supply chains and highlighted how these risks may be inter-connected and amplified using the ISM 

method. These analytical methods are all based on a network structure to assess risks instead of 

viewing risks independently, but they still have several limitations in practice. Specifically, the FTA, 

BBN, and SEM methods cannot model complex risk interdependencies with loops. Simply using the 

measures in SNA cannot quantitatively evaluate to what extent the risks will influence project 

objectives. The ISM method is unable to evaluate the strengths of interdependencies among 

interrelated risks. 

In the context of project management, comprehensive experimental studies on projects are costly and 

infeasible. Thus, simulation is proposed as an alternative tool for empirical research in decision support 

systems (Law, 2007). Some researchers have applied simulation-based methods to project risk 

assessment. For example, Sadeghi et al. (2010) proposed a fuzzy Monte Carlo Simulation (MCS) 

framework for risk assessment and cost-range estimation in construction projects. To further 

investigate project risk interdependencies using simulation-based models, Fang and Marle (2012) 

analyzed project risk networks through a simulation using ARENA software and re-evaluated project 

risks; and Wang et al. (2019; 2020) developed RIN simulation models to support the evaluation of 

project risk response decisions and proposed new network indices using the SNA method to quantify 

the significance of risks and risk interactions. Although simulation-based methods tend to be popular 

in project risk assessment, related studies on assessing the influence of project risks on project 

objectives considering risk interdependencies and analyzing the risk propagation phenomenon in an 

RIN with risk loops have been quite insufficient. 

Overall, based on the literature review, the identified research gap is that there is no systematic study 

that investigates project risk management process considering multiple additional characteristics of 

risks, such as the risk stochastic behavior, complex risk interdependencies with loops, and risk position 

within a network. This work tries to fill this gap by developing appropriate project risk assessment 

models based on analytical and simulation-based methods for managing project risks considering their 

interdependencies in a project RIN. 
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3. Research Methodology 

3.1. Identification of project risks and risk interdependencies 

As the first phase for project risk assessment, risk identification is a process to find, recognize and 

describe potential risks that might help or prevent achieving project objectives (BSI, 2018; PMI, 2017). 

When identifying individual project risks, three main sources can be referred to: (1) previous academic 

research on relevant project risks; (2) historical risk data of completed projects; and (3) expert opinions 

on potential project risks. It is important to identify project risks according to relevant, appropriate 

and up-to-date information. Then, the interdependencies (i.e., the cause-effect relationships) among 

project risks need to be further identified. To increase the accuracy of the identification of risk 

interdependencies, the interrelations among project objects such as work-packages, tasks, or product 

components can help to determine the causal relationships among the risks related to these objects 

(Fang & Marle, 2012). Additionally, risk interdependencies can be identified across different contexts 

or domains of a project because risks associated with quality, cost or schedule may be linked. As a 

result, developing a proper project risk list and determining the cause-effect relationships among 

identified risks are the basis of structuring a project RIN in the next stage. 

3.2. Representation of project risk interdependency network (RIN) 

This research explores a FT-based BBN method and an ISM method to present interdependencies 

among project risks. In these two methods, nodes and directed edges represent the project risks and 

involved interdependencies, respectively. The FT-based BBN method is used in the development of 

FBBN-based project risk assessment model (in Section 3.3.1), while the ISM-based method is employed 

in the development of ISM-MICMAC analysis-based project risk assessment model (in Section 3.3.2), 

SNA-based project risk assessment model (in Section 3.3.3), and MCS-based RIN model for project risk 

assessment (in Section 3.4). 

In the FT-based BBN method, FT analysis and BBN are merged to present risk interdependencies (Kabir 

et al., 2016; Wilson & Huzurbazar, 2010). As shown in Fig. 1, an FT structure can be set up in a top-

down fashion based on the preliminary results of identified project risks and risk cause-effect 

relationships. Furthermore, a BBN structure can be constructed based on the FT transformation for 

fully presenting cause-effect relationships among identified risks. The events and vertical links in an FT 

structure should be directly transformed into corresponding nodes and fundamental links of a BBN 

structure according to conversion algorithms (basic (BEn), intermediate (IEn) and top (TE) events  of 

an FT structure are mapped into root (RNn), intermediate (INn) and leaf (LN) nodes of a BBN, 

respectively). Further, overlapping nodes are combined into one node, and supplementary links can 

be inserted into the BBN structure according to experts’ opinions. The edges in the BBN-based RIN 

structure, directed from a parent node (e.g., RN2) to a child node (e.g., IN1) through probabilistic gates, 

denote the interdependencies among project risks. 
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Fig. 1. Example of a BBN-based RIN structure transformed from an FT structure. 

The ISM method, first introduced by Warfield (1974), has proven to be a practical tool for representing 

and analyzing relations and interdependencies among complex factors within a system. Based on the 

results of project risk identification, the ISM method can be used to develop an RIN and then to classify 

the nodes into levels, considering both direct and indirect relationships (Kwak et al., 2018). Firstly, a 

binary structural self-interaction matrix (SSIM) is established to represent the interactions among 

identified project risks. Contextual relationships between each pair of risks can be determined through 

existing studies or expert opinions via Delphi-based approaches. Secondly, indirect relationships 

between two risks are identified by transforming the SSIM into a reachability matrix (RM), where the 

transitivity among risks is taken into consideration. Then, the identified risks can be partitioned into 

levels in the RM using judging rules according to each risk’s reachability set and intersection set (i.e., 

the overlap of the risk’s antecedent set and reachability set). After removing the indirect links added 

in the RM and reviewing the conceptual inconsistency of risk interactions, a directed graph, i.e., an 

ISM-based network, is constructed to illustrate the hierarchical structure of complex project risk 

interdependencies. Fig. 2 shows an example of the developed ISM-based RIN structure with four 

hierarchical levels. 

 

Fig. 2. Example of an ISM-based RIN structure. 

3.3. Development of project risk assessment models using analytical methods 

Three new project risk assessment models using advanced analytical methods are introduced 

respectively as follows: an FBBN-based risk assessment model, an ISM-MICMAC analysis-based risk 

assessment model, and an SNA-based risk assessment model. 

3.3.1. Proposed FBBN-based risk assessment model 
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There are three major phases in the proposed FBBN-based risk assessment model, as shown in Fig. 3, 

and they are explained in detail as follows. 

 

Fig. 3. Three major phases of the proposed FBBN-based risk assessment model. 

(1) Risk occurrence probability and risk impact assessment: Experts estimate the occurrence 

probability and impact of all identified project risks in form of fuzzy linguistic scales. When experts are 

making judgments based on their knowledge and experience, it would be much easier for them to use 

qualitative descriptors than to provide crisp numerical values directly. The concept of linguistic 

variables allows for ambiguities, uncertainties or incomplete information of experts’ judgments (John 

et al., 2014). Fuzzy linguistic scales can be designed with a set of linguistic variables, and each linguistic 

variable is represented by a fuzzy number and a corresponding fuzzy membership function that covers 

the universe of discourse (Samantra, Datta, & Mahapatra, 2017). In addition, the determination of 

experts’ weights on their judgments’ confidence to conduct fuzzy aggregation of their judgments can 

increase the reliability of data acquired from questionnaire surveys. The link between any two project 

risks in a BBN structure can be evaluated by means of a conditional probability distribution. Before the 

determination of fuzzy conditional probability tables (CPTs), fuzzy prior and conditional probabilities 

of risks should be estimated at first based on experts’ judgments. Through the Bayesian inference (i.e., 

causal and diagnostic inference), different types of risk occurrence probabilities (i.e., prior and 

marginal occurrence probability, and posterior occurrence probability) can be calculated and the final 

results are in the form of crisp values after defuzzification. From the causal inference, risk occurrence 

probabilities are predicted considering existing cause-effect relationships. However, the diagnostic 

inference can provide reliable references for fault diagnosis and risk probability updating analysis 

when risk data are updated during the project implementation. In terms of calculating each risk’s 

impact on project objectives, the experts’ judgments represented by linguistic variables are 

transformed into trapezoidal fuzzy numbers according to a presumed fuzzy scale and then, a fuzzy 

aggregation of the judgments of risk impact based on experts’ judgment weights is conducted. 

Therefore, an average preference fuzzy set is obtained to represent the impact magnitude of each 

project risk. 

(2) Risk rating: This is a process for assessing severities of undesired events, which helps developing 

risk control and mitigation strategies. This phase rates project risks by multiplying their occurrence 
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probability and impact magnitude. Due to the application of FBBN method to occurrence probability 

assessment of risks, different types of risk ratings can be obtained. As a result, corresponding fuzzy 

risk ratings are calculated by multiplying the fuzzy impact magnitude of risks with different types of 

risk occurrence probabilities. Finally, critical project risks having a significant effect on project 

objectives will be identified by prioritizing risks based on the crisp values of risk ratings. 

(3) Risk categorization: This phase categorizes project risks based on the concept of risk matrix, where 

horizontal and vertical axes represent risk occurrence probability and risk impact, respectively. A 

referential risk matrix can be constructed through the product of the linguistic scale of occurrence 

probability and that of impact magnitude. Every project risks will be distributed in the referential risk 

matrix with a certain value of risk rating from the FBBN method, and different risk levels of the 

identified risks can also be divided. Based on the results of risk categorization, project risk 

management practitioners can devise appropriate risk control plans to maximize the project success. 

3.3.2. Proposed ISM-MICMAC analysis-based risk assessment model 

After developing an ISM-based RIN, the importance of project risks associated with project objectives 

can be calculated based on the influence transmission from risks to objectives through network paths, 

as shown in Eq. (2). The weight of different levels (Wl) in the ISM-based RIN calculated using Eq. (1), 

are also considered. 

                                                   Wl = 
1/l

∑ (1/l)m
1

,    l = 1, 2, ⋯, m                                                                   (1) 

where, l is the numerical order of the partitioned levels (the smaller the l, the higher the level in a 

hierarchy), and m is the total number of levels. 

ISσ, Oφ
 = Wl (

1

N1+1
+

1

N2+1
+ ⋯ +

1

Ni+1
+ ⋯ +

1

Nt+1
),    σ =1, 2, ⋯; φ =1, 2, ⋯; t =1, 2, ⋯   (2) 

where, Sσ represents project risks, Oφ represents project objectives, ISσ, Oφ
 denotes the importance of 

Sσ to Oφ, t denotes the number of network paths from Sσ to Oφ, and Ni is the number of intermediate 

nodes on the ith path excluding two endpoints. 

In this proposed risk assessment model, the Matrice d’Impacts Croisés Multiplication Appliquée á un 

Classement (MICMAC) analysis is used to complement the ISM method in the aspect of analyzing the 

drive and dependence degree of each element in the risk assessment model. The values of 

drive/dependence powers can be calculated based on the RM which is obtained from the ISM method. 

Moreover, the MICMAC analysis can classify project risks into four clusters through a drive-

dependence diagram, i.e., autonomous factors (Ⅰ), dependent factors (Ⅱ), linkage factors (Ⅲ), and 

independent factors (Ⅳ) (Chandramowli et al., 2011; Tavakolan & Etemadinia, 2017), which helps 

clarifying how each risk will behave interactively in a project. Through the MICMAC analysis, critical 

project risks can be identified as those have very strong drive power which fall into the category of 

independent or linkage factors. 

3.3.3. Proposed SNA-based risk assessment model 

In the proposed SNA-based risk assessment model, an ISM-based RIN is first developed, and then, a 

series of path-based network risk indicators are tailored based on general SNA measures and classical 

P–I risk model. Fig. 4 displays the commonly used three node measures (i.e., degree, closeness, and 

betweenness) and one edge measure (i.e., betweenness) in traditional SNA method, which are further 

improved in proposed risk indicators.  
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Fig. 4. General measures for node/edge in traditional SNA method.  

In traditional SNA, the shortest path between any pair of nodes in a network is a key factor in most of 

node/edge measures. The “distance” is employed to measure the length of a path between any pairs 

of nodes in the network, i.e., the number of edges between the two nodes in a binary network or the 

sum of the values of edges in a weighted network (Scott, 1991; Wang et al., 2020). Considering the 

edge values in the project RIN are probabilities between 0 and 1, in such case, the use of “distance” is 

not appropriate. Therefore, we use the term “path probability strength” to replace the “distance”, i.e., 

the product of transition probability (TP) values of all the edges in that path. Then, the weighted edge 

betweenness centrality is proposed to evaluate the significance of risk interdependencies. Four 

indicators, namely, out-degree centrality of node, betweenness centrality of node, out-closeness 

centrality of node, and hybrid structural centrality of node (developed based on the weighted edge 

betweenness centrality), are devised to evaluate risk significance from the perspective of SNA method. 

In addition, another two indicators, i.e., risk local and global significance, are proposed based on the 

concepts of risk probability and risk impact from the classical P–I risk model to evaluate risks. As a 

result, project risk rankings based on different risk indicators can be obtained, which support the 

determination of critical project risks and related risk interdependencies from different aspects. 

3.4. Development of project risk assessment model using simulation-based methods 

Monte Carlo method is used in the proposed simulation-based RIN model to capture the stochastic 

behavior of project risk occurrence and then to generate numerous risk scenarios during a project life 

cycle. We make the following assumption in the proposed simulation model: the status of risk 

occurrence (i.e., occurred or not) for each project risk in the RIN is determined once in each simulation 

run (Guan et al., 2021). In the Monte Carlo method, random numbers (RNs) representing occurrence 

probabilities of a risk are generated in the interval (0, 1) following a certain probability distribution. To 

improve the traditional MCS, this work proposes calculated occurrence probability (COP) of each risk 

as a dynamic threshold to evaluate a risk’s occurrence status by comparing the generated RNs with its 

COP. A risk’s COP is calculated based on the spontaneous probability (SP) of the risk and TPs from other 

related upstream risks (varied with the dynamic change of RIN in each simulation run) using probability 

theory. Therefore, if a generated RN of risk Ri in the tth simulation run (i.e., RNi,t) is no more than its 

calculated COP (i.e., COPi,t), then Ri occurs in this simulation run and its occurrence status mci,t = 1, 

otherwise Ri does not occur and mci,t = 0. In addition, a “hypothesis-test” process is designed and 

incorporated in the proposed MCS-based RIN model to solve risk loops which could appear in a project 

RIN, and related four major steps are presented in Fig. 5. As shown in Fig. 6, the inputs of the proposed 
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MCS-based RIN model for project risk assessment includes: an ISM-based project risk interdependency 

network, each risk’s spontaneous probability (SP), transition probability (TP) among interrelated risks, 

and each risk’s impact on project objectives. To evaluate individual project risks and the overall project 

risk level, the outputs of the proposed model can be classified into two groups, where the simulated 

occurrence probability (SOP), simulated local influence (SLI), and simulated global influence (SGI) are 

related to each risk, while the total risk loss (TRL) and total risk propagation loss (TRPL) are related to 

the overall project. The obtained project risk assessment results can be used for planning and 

evaluating risk treatment actions, including planning appropriate risk treatment actions, testing them 

using the proposed risk indicators, and finally making a decision on the selection of the best risk 

treatment action among alternatives. 

 

Fig. 5. A flow diagram of the “hypothesis-test” process in the proposed MCS-based RIN model. 

 

Fig. 6. The inputs and outputs of the proposed MCS-based RIN model for project risk assessment (PRA). 

 

4. Results of Case Studies 

4.1. Risk assessment results using FBBN-based risk assessment model 

An international construction project in Turkey, i.e., the Ankara-Istanbul high-speed railway project, 

was used to demonstrate and verify the application of the proposed FBBN-based risk assessment 

model. This project was commenced in 2008 by a consortium of four companies (two from China and 

two local) through the Engineering, Procurement and Construction agreement. It was into operation 

in 2014. The total length of the high-speed railway is around 158 kilometers. The project scope mainly 
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insists of railway beds and tracks, bridges, tunnels, electrification and communication infrastructure. 

Based on a thorough literature review, a generic network structure of potential project risks from the 

perspective of contractors was preliminarily built. Then, seven domain experts were invited to take 

part in separately organized exploratory interviews and gave their opinions on the cause-effect 

relationships among the existing project risks of the generic network structure, which led to the 

addition of several other project risks and risk interdependencies. A BBN risk structure of the project 

was therefore developed, involving a total of 91 project risks and 111 risk interdependencies. In 

addition, a questionnaire survey for the collection of project risk data (i.e., conditional probability 

tables of potential risks for occurrence probability assessment, and the magnitudes of risk impacts for 

impact assessment) was conducted. Seven distributed questionnaires were all retrieved from the 

experts and then analyzed as the input data for risk assessment using the proposed FBBN-based 

method (as explained in Section 3.3.1). 

The risk degrees of potential project risks considering risk interdependencies were assessed, and 

critical risks were therefore determined. According to a six-level referential risk matrix, the project 

risks were categorized into four risk levels (Categories 2–5) within corresponding sub-ranges of risk 

ratings from the FBBN method, and the results are shown in Table 2. Category 5 represents the highest 

risk level while Category 0 is the lowest risk level. 

Table 2. Risk categorization for the Ankara-Istanbul high-speed railway (Guan, Liu, et al., 2020). 

Risk level 
RFs 

Causal inference Diagnostic inference 

Category 5 (Risk rating: 

0.70929–0.96028) 

R34, R42 R34, R42; I3, L 

Category 4 (Risk rating: 

0.54975–0.70928) 

R41, R7, R2, R11, R23, R6, R33, R13, R20, R45, R25, 
R22, R54, R16; I26, I2, I24, I8, I25, I5, I4, I30, I28, I10, 
I16, I14, I7, I1, I12, I35, I11, I9, I22, I29, I3, L 

R41, R7, R2, R11, R23, R6, R33, R13, R20, R45, R25, 
R22, R54, R16; I26, I24, I2, I25, I8, I5, I4, I30, I28, 
I10, I16, I7, I14, I12, I1, I11, I9, I35, I22, I29 

Category 3 (Risk rating: 

0.46600–0.54974) 

R53, R9, R39, R35, R4, R36, R19, R21, R52, R5, R15, 
R30, R28, R12, R43, R55, R26, R51, R17, R14, R27, R38, 
R18, R37, R3; I19, I27, I32, I13, I15, I34, I18, I21, I17, 
I23, I31, I33, I6, I20 

R53, R9, R39, R35, R4, R36, R19, R21, R52, R5, R15, 
R30, R28, R12, R43, R55, R26, R51, R17, R14, R27, 
R38, R18, R37, R3; I19, I27, I32, I13, I15, I34, I18, I21, 
I17, I23, I31, I33, I20, I6 

Category 2 (Risk rating: 

0.42399–0.46599) 

R48, R31, R10, R47, R8, R1, R40, R44, R50, R29, R24, 
R46, R49, R32 

R48, R31, R10, R47, R8, R1, R40, R44, R50, R29, R24, 
R46, R49, R32 

Category 1 (Risk rating: 

0.41708–0.42398) 

Not identified Not identified 

Category 0 (Risk rating: 

0.00000–0.41707) 

Not identified Not identified 

 

The project risk categorization results in Table 2 show that from both causal inference and diagnostic 

inference, “different construction standards and measurement system (R42)” and “variations in design 

(R34)” are the top-two critical root risks, and “project implementation risk (I3)” is the most critical 

intermediate risk of the project. The overall project risk, i.e., the leaf node “ICP failure (L)”, is located 

in the risk level of Category 4 after the causal inference, denoting that the project risk level is relatively 

high. The project risk manager should pay more attention to the risks located in Category 5 and 

Category 4 and formulate risk control and mitigation plans at the commencement of the project. 

By comparing the results calculated using the proposed FBBN-based risk assessment model with the 

real risk situations of the investigated project, many identified risks appeared during the 

implementation of the project and mostly complied with the obtained critical risks. For example, 

variation in design was one of the most serious problems due to the project owner’s multiple 

requirements and inaccurate geological prospecting documents. In addition, the project contractors 

had a higher pressure to master the required standards and specifications of the implementation 
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process of the project. Furthermore, the contract risk, in terms of unclear contract clauses and 

excessive contract variations, caused difficulties in coordination among project participants. Language 

barrier and information asymmetry also raised challenges to achieve the project objectives. Given the 

above analyses, the proposed FBBN-based risk assessment model has manifested its effectiveness to 

be applied in practical projects. 

4.2. Risk assessment results using ISM-MICMAC analysis-based risk assessment model 

Using the proposed ISM-MICMAC analysis-based risk assessment model, the general green building 

(GB) project risks were investigated and assessed. Firstly, a systematic literature review was conducted 

for differentiating the GB project constraints from the GB project risks, in which 16 constraint factors 

(C) and 22 risk factors (R) throughout a GB project life cycle were identified. Then, 11 GB project 

objectives (O) were selected based on related existing researches. In this work, four types of 

relationships among constraint factors, risk factors and objectives in GB projects were considered, as 

illustrated in Fig. 7. These contextual relationships were determined based on the relevant literature 

and domain knowledge of the authors. Therefore, based on the steps of the ISM method to present 

risk interdependencies (mentioned previously in Section 3.2), a hierarchical ISM-based RIN of GB 

projects was developed. Further, the importance of constraints and risk factors associated with GB 

project objectives was calculated based on Eq. (1) and Eq. (2). Table 3 shows the sample results of the 

importance of identified critical GB project constraints and risks which can highly affect the GB project 

objectives. In addition to the determination of critical factors (i.e., constraints and risks), the GB project 

objectives which are highly affected by risks and constraints can also be identified. For example, “O2 

Completed on time”, “O8 Anticipated return on investment & payback period”, and “O1 Completed 

within budget” are easily to be affected by all the GB project risks and constraints. GB Project risk 

managers should constantly monitor the risks especially related to these three project objectives and 

try to mitigate their negative effects. 

 

Fig. 7. The investigated relationships among GB project constraints, risks and objectives  

            (Guan, Abbasi, et al., 2020). 

Table 3. The importance of critical project risks and constraints associated with GB project objectives 

(Guan, Abbasi, et al., 2020). 

 Top-ten critical GB project risks and constraints Total 

influence  GB project objectives C7 C4 C13 C6 C12 R1 C16 R2 C9 C14 

O1 Completed within budget 1.71 1.69 1.26 0.90 0.54 0.46 0.46 0.31 0.28 0.28 11.43 

O2 Completed on time 2.92 2.86 2.15 1.51 0.90 0.79 0.55 0.52 0.28 0.47 17.26 

O3 Comfort & artistry 0.74 0.72 0.56 0.41 0.27 0.25 0.16 0.18 0.11 0.13 4.33 

O4 Long-term performance 0.39 0.39 0.30 0.23 0.14 0.15 0.09 0.11 0.04 0.06 2.26 

O5 Safety in construction 1.07 1.07 0.78 0.58 0.32 0.26 0.18 0.18 0.25 0.15 7.10 

O6 Safety in operation & 

maintenance 
1.02 1.02 0.75 0.55 0.31 0.26 0.18 0.18 0.21 0.15 6.56 

O7 Green certification 0.37 0.36 1.02 0.75 0.45 0.36 0.25 0.25 0.28 0.22 8.58 
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O8 Anticipated return on 

investment & payback period 
2.50 2.49 1.84 1.28 0.78 0.67 0.49 0.45 0.28 0.44 15.96 

O9 Customer satisfaction 0.93 0.93 0.67 0.50 0.26 0.20 0.15 0.13 0.21 0.15 5.96 

O10 Promotion of brand image 0.98 0.98 0.71 0.53 0.28 0.20 0.15 0.13 0.25 0.15 6.42 

O11 Promotion of new 

technologies & materials 
0.93 0.93 0.67 0.50 0.26 0.20 0.15 0.13 0.21 0.15 5.96 

GB project success (O1–O11) 14.54 14.42 10.71 7.74 4.49 3.82 2.67 2.58 2.38 2.34 - 

No. of influenced objectives 11 11 11 11 11 11 11 11 11 11 - 

 

In addition, the MICMAC analysis was further used to analyze the drive and dependence power of each 

element of the GB project constraints, risks, and objectives. A drive-dependence diagram was then 

constructed in Fig. 8, and all the elements were classified into three groups. In this work, drive power 

is more important than dependence power. Thus, in the independent cluster (Ⅳ), “R1 Unclear 

requirements of a project implementation”, “R2 Ambiguity in contracts”, and “R7 Design errors” are 

the top-three critical GB project risks from the overall network perspective, which should be controlled 

early to decrease the occurrence probability of the risks that they will influence; while “C7 Inadequate 

experienced designers/contractors/suppliers for GB projects”, “C4 Limited GB benchmarks & shared 

information”, and “C13 Inadequate communication & cooperation among project stakeholders” are 

the top-three critical GB project constraints which should also be paid more attention to by project 

risk managers. In contrast, “R3 Inaccurate estimate of project ROI (return on investment) & payback 

period”, “R20 Not getting materials/equipment on approved period/phase”, and “R22 Injuries and 

accidents” are the risks located in the dependent cluster (Ⅱ), which means they have weak drive 

power but strong dependence power. For such risks, they should also be controlled in a timely manner 

to reduce the influence of dependent risks on certain objectives through risk paths. In addition, if 

risk/constraint factors have the same drive power (e.g., “R18 Equipment breakdown” and “R21 

Unlawful disposal of waste”), the factor with the higher dependence power should be addressed 

earlier. From the above analysis results, the critical GB project risks and constraints with higher drive 

power also have stronger influence on project objectives, which tend to be located in the lower levels 

of the ISM-based GB project RIN. 

 

Fig. 8. A MICMAC diagram for GB project constraints, risks and objectives (Guan, Abbasi, et al., 2020). 
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4.3. Risk assessment results using SNA-based risk assessment model 

The proposed SNA-based risk assessment model model was applied to a specific project to verify its 

feasibility and applicability in project risk assessment. The sample project (from Wang et al. (2020)) 

concerns employing artificial intelligence technology for predicting medical items, which belongs to a 

program related to logistics and healthcare. There are 16 risks and 26 direct risk interdependencies of 

the sample project originally identified by Wang et al. (2020). In addition, the evaluated values of risk 

spontaneous probability (SP) and risk impact on the project objectives (denoted by cost) are also 

provided. These risk-related data were initially collected by a primary member of the project who was 

in charge of the project plan, implementation, and risk management.  

Based on these risk data, we first developed a two-level hierarchical ISM-based RIN of the project using 

the ISM method. Several risk loops can be identified in the project RIN due to complex risk 

interdependencies. Then, the project risk assessment process was performed by calculating the values 

of six proposed risk indicators, respectively. Critical project risks which can highly affect the project 

objectives were therefore determined based on the local and global risk measures from the network 

perspective. The obtained results are presented in Table 4. Locally, “R08 Building and training the 

model repeatedly”, “R06  Poor selection of the medical items”, and “R05 Poor analysis of the factors 

regarding medical items” are the top-three risks which have the highest values of the out-degree 

centrality; and “R03 Unclear milestone and technical route”, “R16 Too much rework for the team in 

charge of the modeling”, and “R09 Interfaces problem among the software platforms of different 

terms” are the the top-three risks which have the highest values of the risk local significance. Globally, 

“R13 Tense partnerships among the teams”, “R02 Communication problems between the teams”, and 

“R03” are ranked highest in the betweenness centrality; “R06”, R05”, and “R03” are the top-three risks 

which have the highest values of out-closeness centrality; “R08”, R06”, and “R05” are highly ranked in 

the hybrid structural centrality (the same with the top-three risks evaluated by the out-degree 

centrality); and “R03”, “R04 Lack of professional medical knowledge”, and “R06” are ranked highest in 

the risk global significance. These identified risks from six different aspects of risk positions in a 

network are essential to the project, specific risk mitigation measures need to be formulated in 

advance and the project risk manager should pay more attention to these critical risks during the 

project implementation. 

Table 4. Project risk assessment results from the SNA-based risk assessment model. 

 

Node No. 

SNA-based indicators 
P-I risk model-based 

indicators 

Out-degree 

centrality 

Betweenness 

centrality 

Out-closeness 

centrality 

Hybrid structural 

centrality (*10
-2

) 

Risk local 

significance 

(*10
-2

) 

Risk global 

significance 

(*10
-2

) 

R01 0.027 0 0.098 0.024 0.267 1.505 

R02 0.053 0.552 0.178 0.107 0.533 1.348 

R03 0.067 0.471 0.254 0.194 1.167 3.238 

R04 0.047 0 0.227 0.077 0.400 2.696 

R05 0.087 0.410 0.260 0.436 0.100 1.829 

R06 0.113 0.467 0.359 0.312 0.480 2.635 

R07 0.087 0.048 0.146 0.146 0.267 1.383 

R08 0.140 0.190 0.181 0.324 0.600 1.198 

R09 0.040 0 0.107 0.076 0.800 1.653 

R10 0.053 0.224 0.135 0.257 0.187 0.694 

R11 0.053 0.267 0.105 0.237 0.533 0.341 

R12 0.040 0 0.079 0.030 0.133 0.133 
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R13 0.033 0.557 0.067 0.125 0.400 0.490 

R14 0.027 0 0.047 0.112 0.267 0.228 

R15 0.020 0 0.094 0.034 0.427 0.745 

R16 0.027 0.162 0.053 0.137 0.800 0.349 

 

4.4. Risk assessment and treatment results using MCS-based RIN model 

The project case used here to illustrate the proposed MCS-based RIN model is the same with the 

sample project used in Section 4.3. Thus, the project RIN developed based on the ISM method is also 

the same. By inputting the original project risk-related data (i.e., each risk’s spontaneous probability 

(SP), transition probability (TP) among interrelated risks, and each risk’s impact on project objectives) 

into the proposed MCS-based RIN model in project risk assessment, evaluated values of the proposed 

risk indicators (i.e., simulated occurrence probability (SOP), simulated local influence (SLI), and 

simulated global influence (SGI)) were calculated. Table 5 shows the obtained project risk prioritization 

results, compared with those evaluated by spontaneous probability (SP) and risk criticality (RC) from 

the classical P–I risk model. 

Overall, the project risk prioritization results have changed after using the proposed MCS-based RIN 

model. In respect to risk occurrence probability, “R14 Too many tests on the model”, R05 and R16 

have lower values of SP, while in terms of SOP, they are top ranked with the highest values, indicating 

that although this kind of risks are unlikely to occur spontaneously, they are highly affected by others 

due to direct and indirect cause-effect relationships. Some risks’ occurrence probabilities may be 

evaluated as similar (e.g., R03 and “R15 Project scope spread”) using the classical P–I risk model (SPi) 

and the proposed simulation model (SOPi), however, they are still underestimated to some extent. 

Except for the source risk “R01 Language problems and cultural conflicts”, all the other risks have 

increased occurrence probabilities calculated by the proposed method, demonstrating that risk 

interdependencies can increase risk occurrence probability. 

From the aspect of risk influence, the SLI of each risk (excluding R01) is higher than its evaluated RC 

from the classical P–I risk model due to the different values of risk occurrence probability, indicating 

that the risk propagation across the RIN has amplified the risk influence on project objectives. The SGI 

of a risk reflects to what extent the occurrence of this risk can increase other risks’ influence on project 

objectives. Some risks have lower SLI, but their SGI may be higher, such as R05 and “R07 Poor selection 

of the existing database”. 

Table 5. Risk prioritization by different indicators. 

Ranking 

From the proposed MCS-based RIN model From the classical P–I risk model 

SOPi  SLIi ($100) SGIi ($100) SPi RCi ($100) 

Risk 
No. 

Value 
Risk 
No. 

Value 
Risk 
No. 

Value 
Risk 
No. 

Value 
Risk 
No. 

Value 

1 R14 0.895 R11 2.950 R05 18.574 R01 0.8 R03 1.75 

2 R05 0.853 R16 2.516 R14 18.041 R03 0.7 R16 1.2 

3 R16 0.839 R08 2.345 R07 17.256 R04 0.6 R09 1.2 

4 R03 0.830 R03 2.074 R13 17.185 R09 0.6 R08 0.9 

5 R13 0.825 R14 1.791 R01 17.095 R02 0.4 R01 0.8 

6 R07 0.811 R02 1.321 R03 16.322 R06 0.4 R02 0.8 

7 R01 0.799 R06 1.250 R16 16.243 R07 0.4 R11 0.8 

8 R08 0.782 R09 1.246 R10 15.711 R13 0.4 R06 0.72 

9 R11 0.737 R13 1.238 R08 15.546 R15 0.4 R15 0.64 

10 R10 0.736 R10 1.031 R06 14.597 R16 0.4 R13 0.6 

11 R06 0.694 R15 0.879 R11 14.049 R05 0.3 R04 0.6 

12 R02 0.661 R07 0.811 R04 13.676 R08 0.3 R07 0.4 
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13 R04 0.651 R01 0.799 R02 13.442 R10 0.2 R14 0.4 

14 R09 0.623 R12 0.746 R09 12.730 R11 0.2 R10 0.28 

15 R15 0.549 R04 0.651 R15 11.423 R14 0.2 R12 0.2 

16 R12 0.373 R05 0.427 R12 8.131 R12 0.1 R05 0.15 

 

Moreover, the results of project level risk assessment indicators, i.e., the project total risk loss (TRL) 

and project total risk propagation loss (TRPL), were further calculated. Specifically, the obtained 

probability distribution of the project TRL was illustrated in Fig. 9. From the curve of cumulative 

distribution function (CDF), the project TRL in the interval value of $1500–$2820 accounts for around 

79% of all the possible project risk scenarios, denoting that the project TRL caused by the project risks 

is highly possible to distribute in this range. Additionally, the expected (average) value of the project 

TRL was evaluated as around $2207 (locally), while the expected value of the project TRPL was 

calculated as $24002 (globally). These results can provide project risk managers with a holistic risk 

perception from the level of an overall project at its earliest stage. 

 
Fig. 9. Probability distribution of the project total risk loss (Guan et al., 2021). 

 
Base on the above project risk assessment results, a series of risk treatment actions can be formulated, 

and their performance can be further evaluated using proposed five risk indicators. Fig. 10 shows the 

comparison of the values of the indicators related to each risk (i.e., SOP, SLI, and SGI) after four 

different risk treatment actions. The lower the line in the figures, the better the performance of risk 

treatment action. Therefore, the Action 4 outperforms the other three risk treatment actions. From 

the level of overall project, the performance of different risk treatment actions were evaluated by the 

reduced value of project TRL and the reduced value of project TRPL. As shown in Table 6, the Action 4 

can reduce the highest values of both project TRL and TRPL among these four actions, so it also works 

the best in the project risk treatment. 
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Fig. 10. Comparison of (a) the SOP, (b) the SLI, and (c) the SGI of risks after different project risk 

              treatment actions (Guan et al., 2021). 

 
Table 6. The performance of different risk treatment actions from the project level. 

Performance 

Risk treatment actions 

Action 1 (Classical P–I 
risk model) 

Action 2 
(Wang et al., 2019) 

Action 3 
(Wang et al., 2020) 

Action 4  
(Proposed model) 

Reduced value of 
project TRL 

$217 $489 $412 $826 

Reduced value of 
project TRPL 

$3711 $9274 $7978 $14717 

 
 

5. Discussion 

Throughout this research, investigation of the influence of project risk interdependencies is based on 

both analytical and simulation methods, which improves the accuracy of project risk assessment 

results. A series of network-based risk indicators are proposed to quantify risk influence on project 

objectives and further to facilitate the formulation of effective risk treatment actions. Fig. 11 illustrates 

how multiple characteristics of project risks are analyzed by four proposed project risk assessment 

(PRA) models:  the FBBN-based PRA model, the ISM-MICMAC analysis-based PRA model, the SNA-

based PRA model, and the MCS-based RIN model for PRA. All these models have considered risk 

interdependencies during the project risk assessment. Further, the FBBN-based PRA model also uses 

the concepts of the classical P–I risk model; the ISM-MICMAC analysis-based PRA model additionally 

analyzes risk position in a network; the SNA-based PRA model also considers the classical P–I risk 

model, risk position, and risk loops in its analysis; and the MCS-based RIN model for PRA incorporates 

the classical P–I risk model, risk stochastic behavior, and risk loops as well. Based on the analysis of 

case studies, the proposed four project risk assessment models can provide more reliable risk 

assessment results and reflect more accurate project risk conditions than the methods only based on 

the classical P–I risk model. 

 

Fig. 11. The related project risk characteristics analyzed by proposed risk assessment (PRA) models. 
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This study makes some academic contributions to project risk management and in particular, to risk 

assessment. Firstly, effective analytical methods and simulation-based methods are investigated and 

designed to develop project risk assessment models considering the effects of risk interdependencies. 

Secondly, apart from involving the identification of cause-effect relationships among risks in the 

proposed decision-support system for project risk assessment, more aspects of the RIN complexity are 

taken into account, including the stochastic behavior of risk occurrence, risk loops, and risk position 

within a project RIN. Thirdly, proposed interdependency-based risk indicators can help planning of 

more appropriate project risk treatment actions. 

Additionally, there are a number of managerial implications of our work, which are listed as follows: 

(1) Project risk management practitioners can have more comprehensive perception of project risk 

through considering complex risk interdependencies in project risk assessment from a 

“network” perspective. 

(2) The proposed risk assessment models try to mitigate the gap between theory and practice of 

the project risk management, so the basic concepts of the classical P–I risk model (i.e., risk’s 

probability and impact), which are widely used by practitioners in managing project risks, are 

considered. Therefore, all related project risk management practitioners can engage their 

knowledge and experience in the risk assessment process. More importantly, the proposed risk 

assessment processes are easy to be conducted in practice because all complicated calculations 

are solved by program codes and/or software and practitioners only need to collect the project 

risk-related data as the inputs for project risk assessment. 

(3) The proposed project risk assessment models have high universality and flexibility, which can 

be applied to projects in different fields (e.g., software, civil, or business), and even to large and 

complex projects. In particular, the proposed decision-support system for project risk 

assessment developed using the MCS-based RIN model outperforms many existing analytical 

project risk assessment methods which mainly rely on complicated calculations. 

(4) The proposed project risk assessment models can be used at the commencement stage of a 

project when there is high uncertainty about project risks, and the project risk assessment 

results can update periodically to reflect risk conditions of the project over time when the new 

risk information is available. 

 

6. Conclusions 

This study has explored different project risk assessment models in the context of risk 

interdependencies using both analytical and simulation-based methods. The FT-based BBN and ISM 

methods were proposed to develop a project RIN based on identified project risks and their cause-

effect relationships. The proposed FBBN-based risk assessment model, ISM-MICMAC analysis-based 

risk assessment model, and SNA-based risk assessment model are analytical methods-based models. 

In addition, the MCS-based RIN model is simulation-based model for project risk assessment. The 

corresponding risk prioritization results can support project managers in formulating appropriate risk 

treatment actions. The related results of different case studies highlight the importance of considering 

risk interdependencies in project risk assessment and verify the performance of the proposed models 

in practical use. 

Compared with the proposed analytical methods-based risk assessment models, the proposed risk 

simulation model can address stochastic behavior of project risks as well as deal with risk loops in the 
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complex project RIN. Through modeling the propagation behavior of risks in an RIN, the model enables 

project managers to gain innovative insights into interdependencies among project risks and possible 

risk influence on project objectives from a network perspective. However, the obtained risk 

assessment results from the simulation-based model do not consider the risk position in a project RIN. 

In order to obtain comprehensive risk assessment results, there is a need to integrate analytical 

methods-based and simulation-based risk assessment models. 

There are a number of potential extensions of this research in the future, particularly: (1) the MCS-

based RIN model for project risk assessment can be improved by integrating with SNA method to 

incorporate more analysis of risk position in the RIN; (2) as projects are time-related dynamic systems, 

project risks and risk interdependencies may vary with project phases, so the dynamic behavior of 

project RIN throughout a project lifecycle will be further investigated under current project risk 

assessment framework; (3) additional parameters, such as project budget and cost of risk treatment 

actions, will be involved to further optimize project risk treatment actions; and (4) an integrated 

practical tool for project risk assessment can be developed to incorporate the proposed models with 

the aim of further smoothing and reducing the workload of project risk management practitioners. 

 

References 

Ahmadabadi, A. A., & Heravi, G. (2019). Risk assessment framework of PPP-megaprojects focusing 

on risk interaction and project success. Transportation Research Part A: Policy and Practice, 
124, 169–188. https://doi.org/10.1016/j.tra.2019.03.011 

Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their 
foundation. European Journal of Operational Research, 253(1), 1–13. 
https://doi.org/10.1016/j.ejor.2015.12.023 

BSI. (2018). International Standard ISO 31000: Risk Management-Guildelines (Second). BSI 
Standards Publication. 

Chandramowli, S., Transue, M., & Felder, F. A. (2011). Analysis of barriers to development in landfill 
communities using interpretive structural modeling. Habitat International, 35(2), 246–253. 
https://doi.org/10.1016/j.habitatint.2010.09.005 

El-Sayegh, S. M. (2008). Risk assessment and allocation in the UAE construction industry. 
International Journal of Project Management, 26(4), 431–438. 

Fang, C., & Marle, F. (2012). A simulation-based risk network model for decision support in project 
risk management. Decision Support Systems, 52(3), 635–644. 
https://doi.org/10.1016/j.dss.2011.10.021 

Guan, L., Abbasi, A., & Ryan, M. J. (2020). Analyzing green building project risk interdependencies 
using Interpretive Structural Modeling. Journal of Cleaner Production, 256, 120372. 
https://doi.org/10.1016/j.jclepro.2020.120372 

Guan, L., Abbasi, A., & Ryan, M. J. (2021). A simulation-based risk interdependency network model 
for project risk assessment. Decision Support Systems, 148(May), 113602. 
https://doi.org/10.1016/j.dss.2021.113602 

Guan, L., Liu, Q., Abbasi, A., & Ryan, M. J. (2020). Developing a comprehensive risk assessment 
model based on fuzzy Bayesian belief network (FBBN). Journal of Civil Engineering and 

Management, 26(7), 614–634. https://doi.org/10.3846/jcem.2020.12322 

Hu, Y., Zhang, X., Ngai, E. W. T., Cai, R., & Liu, M. (2013). Software project risk analysis using 



 

 

Project Governance & Controls Review 

2021 

 

PGCAR 2021 20 https://www.pgcs.org.au/ 

 

Bayesian networks with causality constraints. Decision Support Systems. 
https://doi.org/10.1016/j.dss.2012.11.001 

Hwang, W., Hsiao, B., Chen, H. G., & Chern, C. C. (2016). Multiphase Assessment of Project Risk 
Interdependencies: Evidence from a University ISD Project in Taiwan. Project Management 

Journal, 47(1), 59–75. https://doi.org/10.1002/pmj.21563 

Islam, M. S., Nepal, M. P., Skitmore, M., & Attarzadeh, M. (2017). Current research trends and 
application areas of fuzzy and hybrid methods to the risk assessment of construction projects. 
Advanced Engineering Informatics, 33, 112–131. 

John, A., Paraskevadakis, D., Bury, A., Yang, Z., Riahi, R., & Wang, J. (2014). An integrated fuzzy 
risk assessment for seaport operations. Safety Science, 68, 180–194. 

Kabir, G., Sadiq, R., & Tesfamariam, S. (2016). A fuzzy Bayesian belief network for safety 
assessment of oil and gas pipelines. Structure and Infrastructure Engineering, 12(8), 874–889. 

Kwak, D. W., Rodrigues, V. S., Mason, R., Pettit, S., & Beresford, A. (2018). Risk interaction 
identification in international supply chain logistics: Developing a holistic model. International 

Journal of Operations and Production Management, 38(2), 372–389. 
https://doi.org/10.1108/IJOPM-03-2016-0121 

Law, A. M. (2007). Simulation Modeling and Analysis (Fourth). McGraw-Hill. 

Marle, F., & Vidal, L. A. (2008). Potential applications of DSM principles in project risk 
management. Proceedings of the 10th International DSM Conference. 

Marle, F., Vidal, L. A., & Bocquet, J. C. (2013). Interactions-based risk clustering methodologies and 
algorithms for complex project management. International Journal of Production Economics. 
https://doi.org/10.1016/j.ijpe.2010.11.022 

Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for supply 
chain risk propagation. International Journal of Production Research, 56(17), 5795–5819. 
https://doi.org/10.1080/00207543.2018.1467059 

PMI. (2017). A Guide to the Project Management Body of Knowledge (PMBOK) (Sixth). Project 
Management Institute. 

Sadeghi, N., Fayek, A. R., & Pedrycz, W. (2010). Fuzzy Monte Carlo simulation and risk assessment 
in construction. Computer-Aided Civil and Infrastructure Engineering, 25(4), 238–252. 
https://doi.org/10.1111/j.1467-8667.2009.00632.x 

Samantra, C., Datta, S., & Mahapatra, S. S. (2017). Fuzzy based risk assessment module for 
metropolitan construction project: An empirical study. Engineering Applications of Artificial 

Intelligence, 65, 449–464. 

Scott, J. (1991). Social network analysis: A handbook. SAGE Publications, Inc. 

Shoar, S., Nasirzadeh, F., & Zarandi, H. R. (2019). Quantitative assessment of risks on construction 
projects using fault tree analysis with hybrid uncertainties. Construction Innovation, 19(1), 48–
70. https://doi.org/10.1108/CI-07-2018-0057 

Taroun, A. (2014). Towards a better modelling and assessment of construction risk: Insights from a 
literature review. International Journal of Project Management. 
https://doi.org/10.1016/j.ijproman.2013.03.004 

Tavakolan, M., & Etemadinia, H. (2017). Fuzzy Weighted Interpretive Structural Modeling: Improved 
Method for Identification of Risk Interactions in Construction Projects. Journal of Construction 

Engineering and Management, 143(11), 04017084. https://doi.org/10.1061/(asce)co.1943-
7862.0001395 



 

 

Project Governance & Controls Review 

2021 

 

PGCAR 2021 21 https://www.pgcs.org.au/ 

 

Wang, L., Goh, M., Ding, R., & Pretorius, L. (2019). Improved simulated annealing based risk 
interaction network model for project risk response decisions. Decision Support Systems, 122, 
113062. https://doi.org/10.1016/j.dss.2019.05.002 

Wang, L., Sun, T., Qian, C., Goh, M., & Mishra, V. K. (2020). Applying social network analysis to 
genetic algorithm in optimizing project risk response decisions. Information Sciences, 512, 
1024–1042. https://doi.org/10.1016/j.ins.2019.10.012 

Wang, T., Wang, S., Zhang, L., Huang, Z., & Li, Y. (2016). A major infrastructure risk-assessment 
framework: Application to a cross-sea route project in China. International Journal of Project 

Management. https://doi.org/10.1016/j.ijproman.2015.12.006 

Warfield, J. N. (1974). Developing Interconnection Matrices in Structural Modeling. IEEE 

Transactions on Systems, Man and Cybernetics on System, SMC-4(1), 81–87. 

Wilson, A. G., & Huzurbazar, A. V. (2010). Bayesian networks for multilevel system reliability. 
Reliability Engineering and System Safety, 92(10), 1413–1420. 

Yang, R. J., & Zou, P. X. W. (2014). Stakeholder-associated risks and their interactions in complex 
green building projects: A social network model. Building and Environment, 73, 208–222. 
https://doi.org/10.1016/j.buildenv.2013.12.014 

Yang, R. J., Zou, P. X. W., & Wang, J. (2016). Modelling stakeholder-associated risk networks in 
green building projects. International Journal of Project Management, 34(1), 66–81. 
https://doi.org/10.1016/j.ijproman.2015.09.010 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. 

Zavadskas, E. K., Turskis, Z., & Tamošaitiene, J. (2010). Risk assessment of construction projects. 
Journal of Civil Engineering and Management, 16(1), 33–46. 

Zhao, X., Hwang, B. G., & Gao, Y. (2016). A fuzzy synthetic evaluation approach for risk 
assessment: A case of Singapore’s green projects. Journal of Cleaner Production. 
https://doi.org/10.1016/j.jclepro.2015.11.042 

 


