EVM & Project Controls Applied to Manufacturing

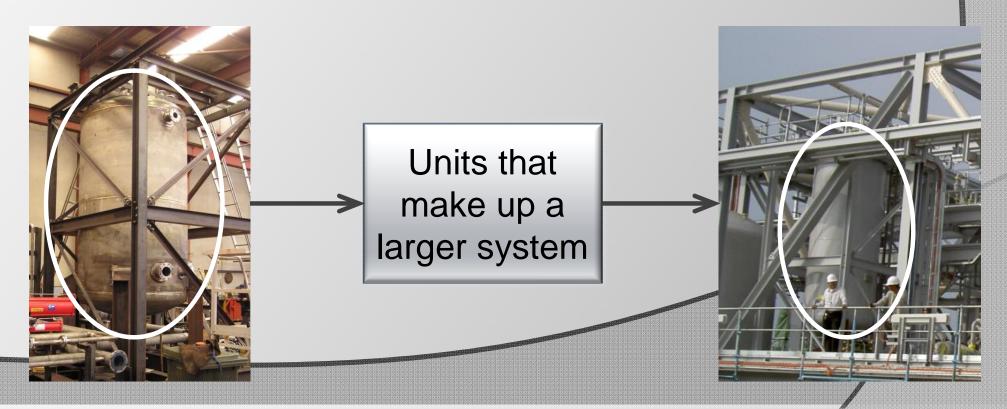
PGCS – Canberra 6-7 May 2015

David Fox General Manager L&A Pressure Welding Pty Ltd

Contents

- 1) Background . Business & research context
- 2) Research . Fitting EVM & the findings
- 3) Influence . Lessons & value
- 4) Application . Challenges & further work

1. Background


- Research . snapshot
- Business . application / scale
- Projects . details

Background – Research Snapshot

- Type of research Industry origin
 - Investigate EVM in an SME manufacturing case
- Why was the research done?
 - Enhance project management knowledge
 - Add value to a traditional product
- The objectives of the research?
 - Establish a project mgt. system project controlq
 - Improve project communication . ±ime focusedq
- Thesis Title (ME Res)
 - % VM Applied to an Engineered-to-Order Multiple Project Environment+(2009-2012)

Background – Business Application

- What is being manufactured?
 - Customised pressure equipment (a product)
- Application focus
 - Medium size pressure vessels

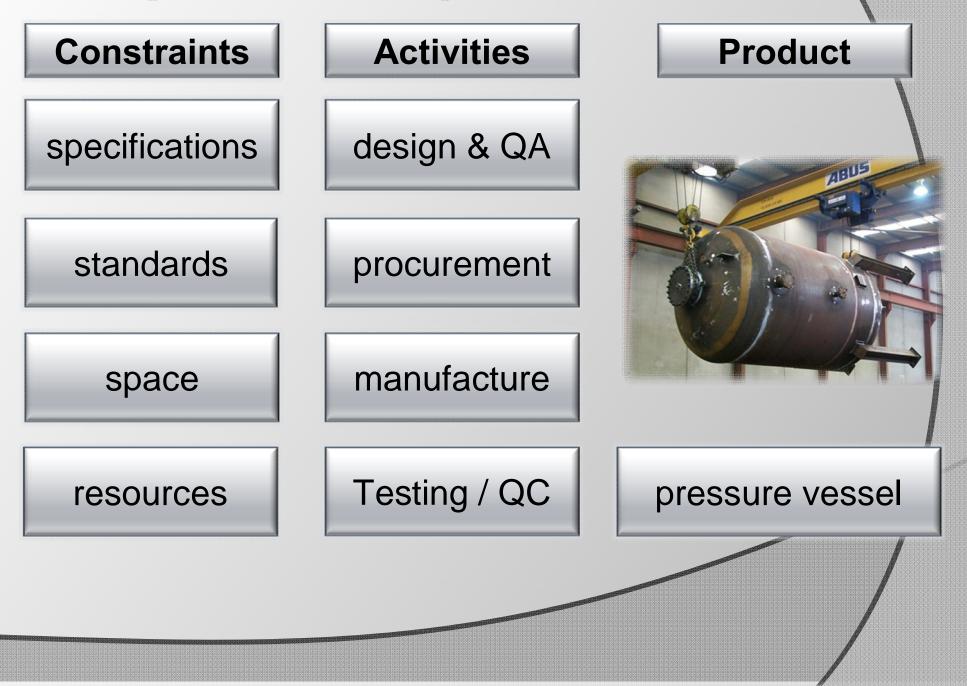
Background – Business / Project Scale

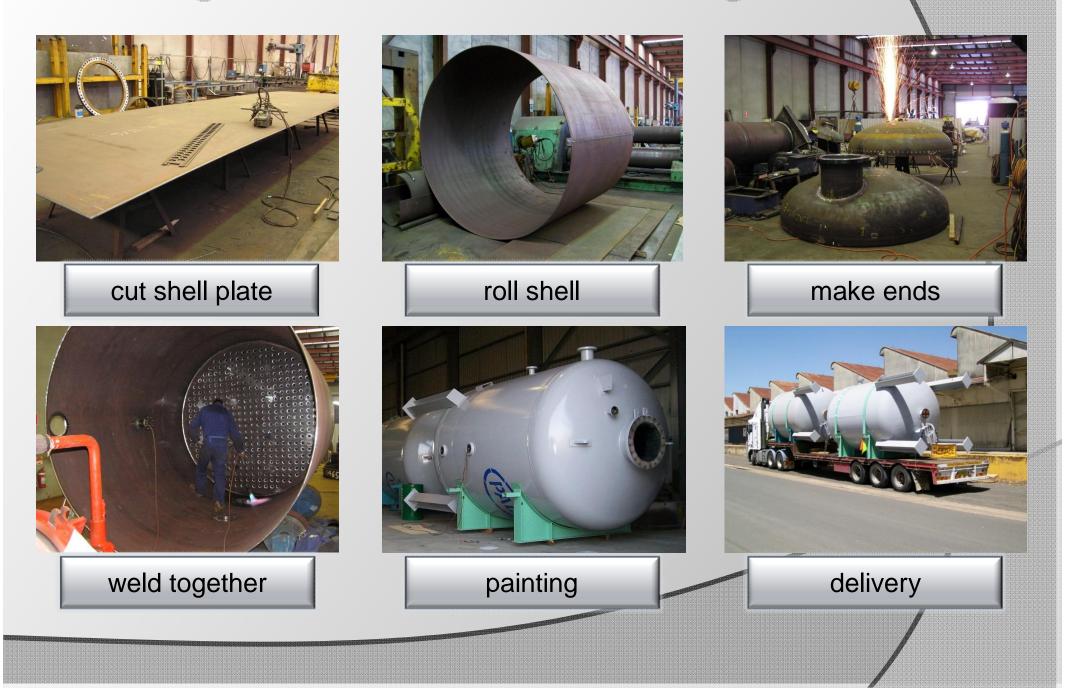
Our Project type / scale

- High compliance; design & manufacture
- Average unit value ~\$150K
- Average duration ~ 26 weeks

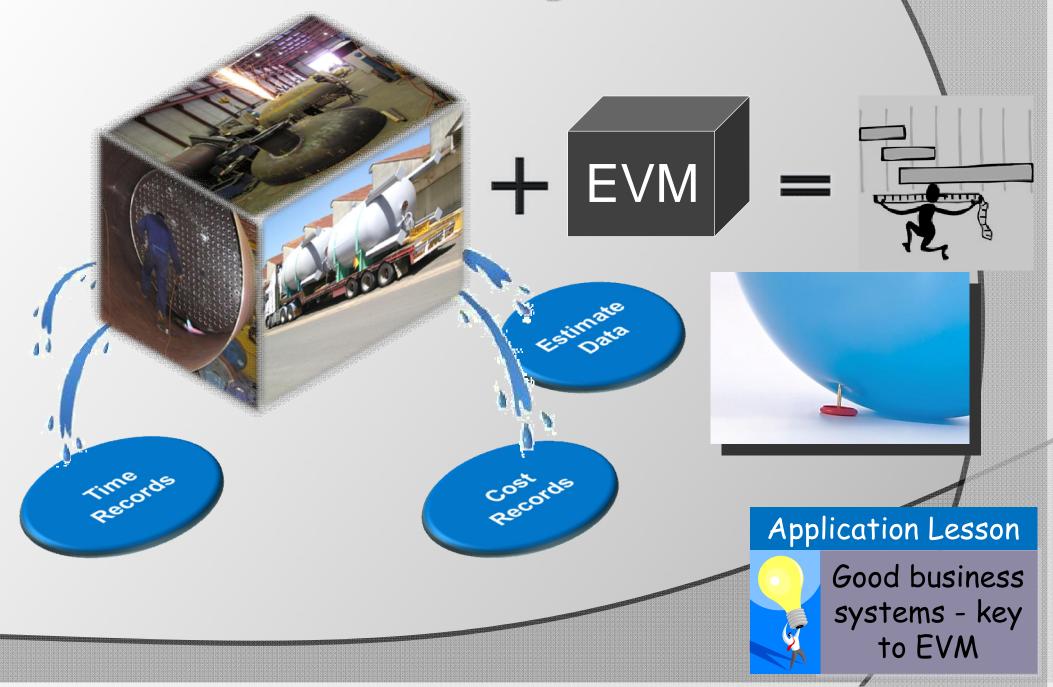
SME Environment

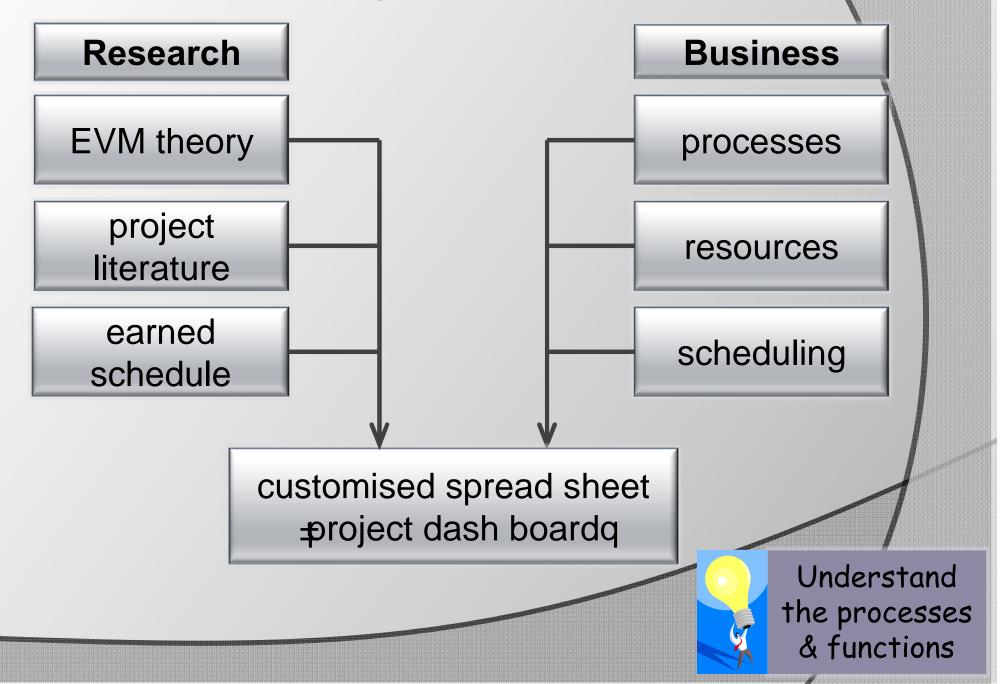
- Employees . 32
- Project portfolio ~ 30
- Manufacturing projects ~ 16


A large project for L&A was generally considered a small project in literature terms



Background – Project Activities


Background – Manufacturing Tasks

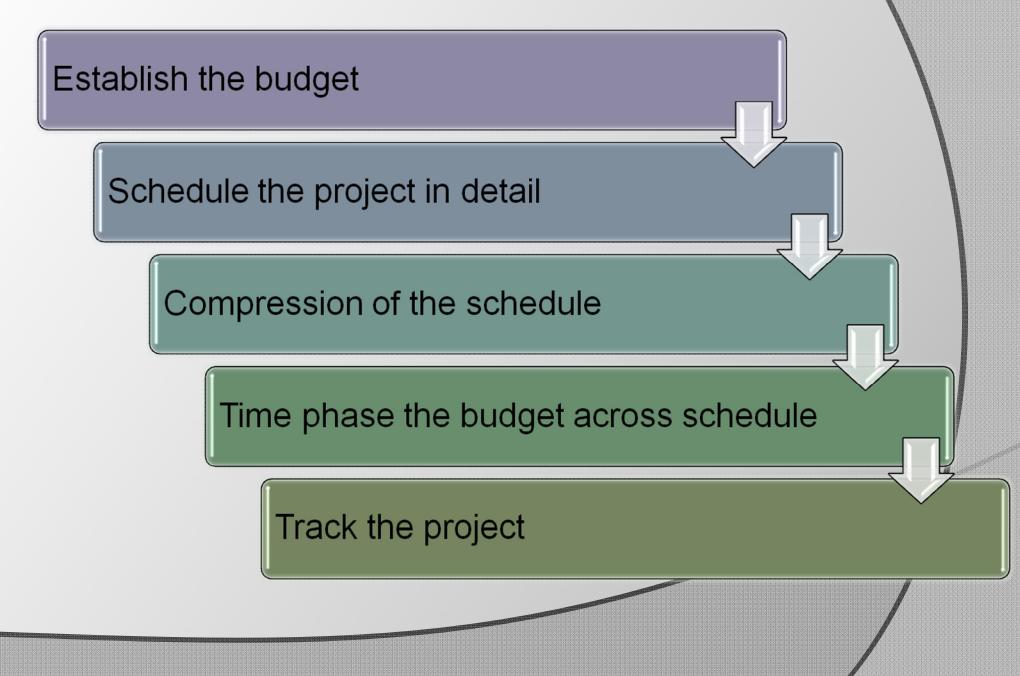

2. Research

Framework . getting started
 Configuration . application details
 Outputs . EVMc response

Framework – Starting out

Framework – Inputs

Framework – Approach taken


Adopting a spread sheet method

- Tailor EVM inputs for business case
- Manipulation of EVM calculations
- Control outputs & their presentation

• Using EVM outside the scheduling

- Preserve the project culture for research
- Run EVM in background to validate outputs
- Identify system components that added value

Application – EVM Process

Application – Budget Structure

Elements	Assigned Cost	
Materials	\$ - net value	Adjust quantity to
Services	\$ - net value	capture product
Labour	\$ - hours x rate	activities
BAC	\$ - Sub total	
Overhead	\$ - indirect costs	Needs to reflect
Reserve	\$ - risk margin	organisationa
Profit	\$ - benefit	cost structure
Project Budget	\$ - Total	1
		Map budge with produc & estimatin

Application – Scheduling in Detail

			W-3	W-2	W-1	W1	W2	W3	W4	W5	
Sample Schedule		4 wks		nple Sch						🕴 4 wks	-
1 Engineering		1 wk		Engine	ering (🖡 1 wk				
± 1.1 Design		0.6 wks		C	esign I						
± 1.2 Detailing		0.6 wks			Detaili	ing 🦟					
2 Materials		2 wks		Mat	terials (🏺 2 wks			
± 2.1 Ordering		0.9 wks		Ord	dering (· · · · · · · · · · · · · · · · · · ·					
± 2.2 Delivery		1 wk			De	elivery 🕻	· · · · · · · · · · · · · · · · · · ·	•			
3 Manufacture		2 wks			Manuf	acture 🖣			📕 2 wk	s	
+ 3.1 Shell	WBS	1 wk				Shell	-	,			
+ 3.2 Ends		0.5 wks					Ends I				
+ 3.3 Weld		0.5 wks					W	ld 🥅			
± 4 QA / QC		1 wk				Q	A/QCI		🖡 1 wk		
± 5 Paint		0.5 wks						Paint 🖣	_	0.5 wks	
+ 6 Delivery	V	0.3 wks				· · · · · · · · · · · · · · · · · · ·		Deli	very 🛡	🏺 0.3 wl	ks

Work Breakdown Structure Plan project around key manufacturing tasks

High level of detail in WBS: "Improves planning process "Complicates EVM application

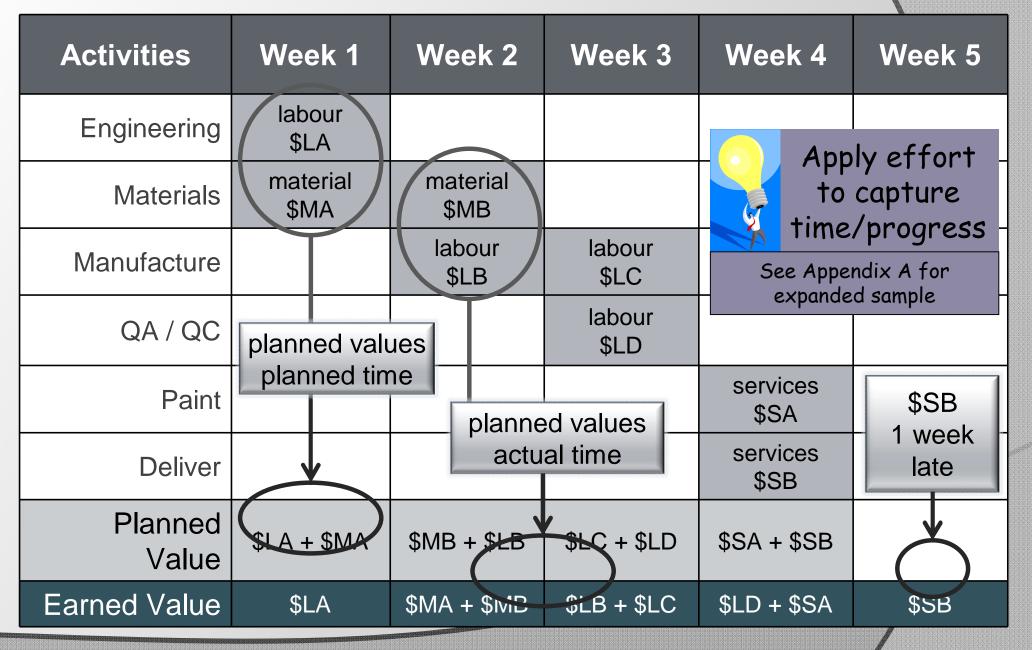
Application – Schedule, Compression

Materials & Services

- Reflect groups defined by the budget
- Material → plate (\$MA), ends (\$MB), õ
- Services → painting (\$SA), transport (\$SB), õ
- Labour Break Down
 - Engineering deliverables → drawings (\$LA)
 - Manufacturing milestones → roll shell (\$LB), õ

Balance EVM

effort vs. benefit


QA / QC milestones → testing (\$LD)

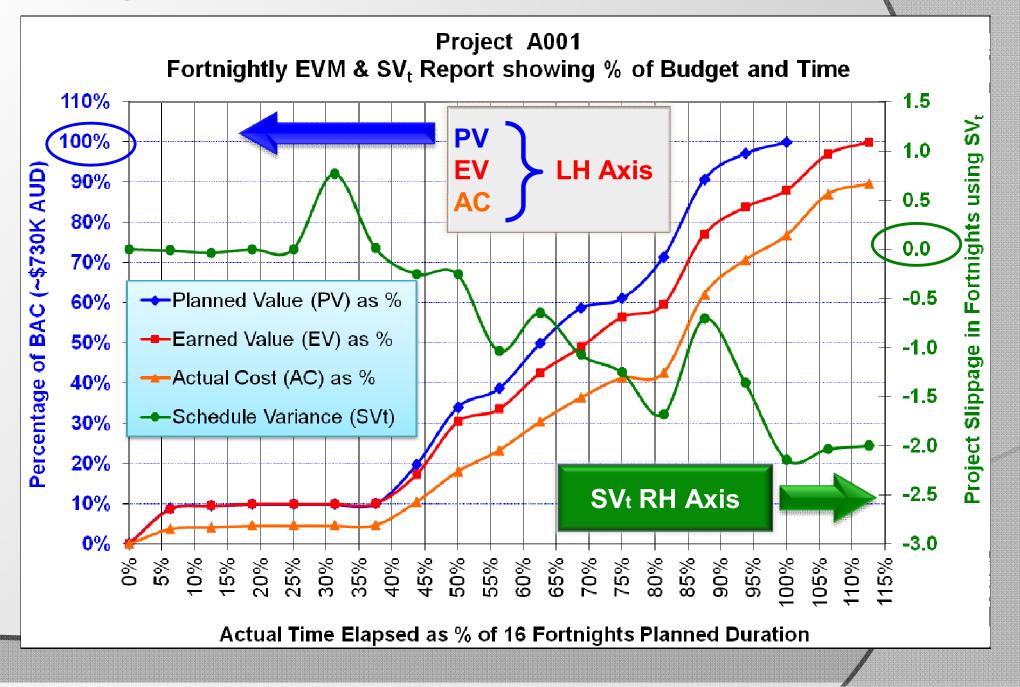
Application – Time Phase the Budget

Activities	Week 1	Week 2	Week 3	Week 4
Engineering	labour \$LA		Assign b	udget values
Materials	material \$MA	material \$MB	period	
Manufacture		labour \$LB	labour \$LC	
QA/QC			labour \$LD	
Painting				services \$SA
Delivery				services \$SB

Time period to suit the projects duration

Application – Tracking the Project

Outputs – EVM & ES Measures


• EVM \rightarrow 'S' Curves

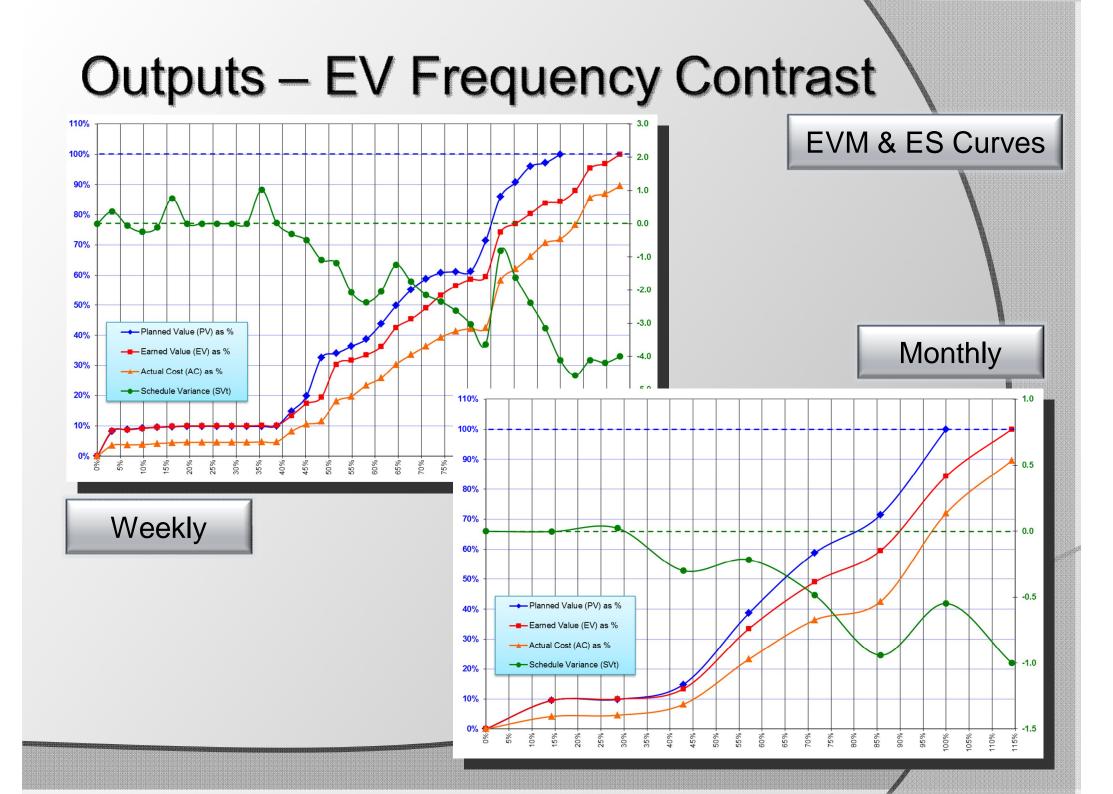
- Planned Value . PV
- Earned Value . EV
- Actual Cost . AC

- Robust time based measure
- Can be overlayed on %S+curve
- Used as a visual progress statusqmeasure

Outputs – EVM & ES Curve

Outputs – Frequency Options

Weekly


- Noisy but responsive curve
- Requires high level of effort to maintain

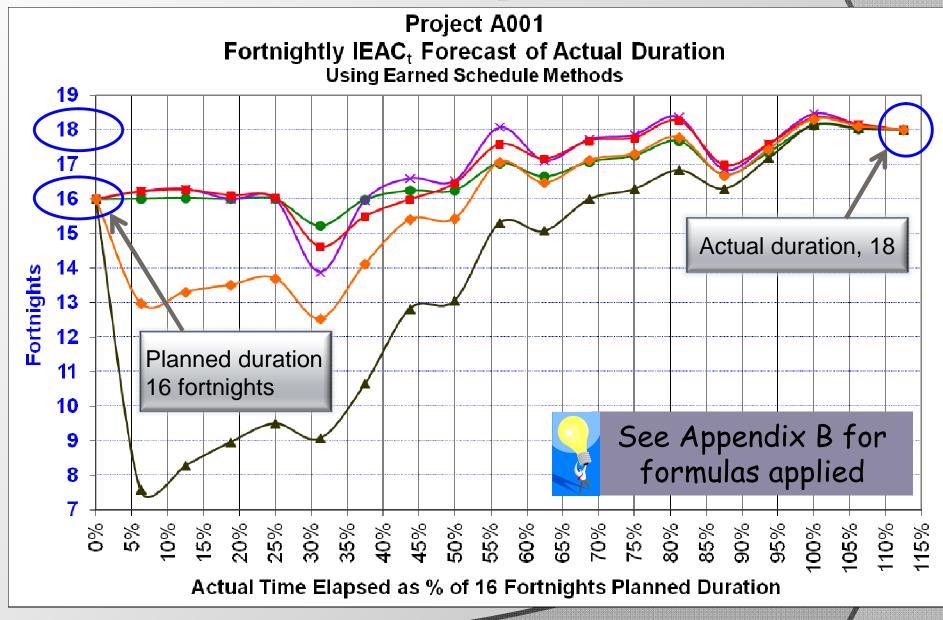
Fortnightly

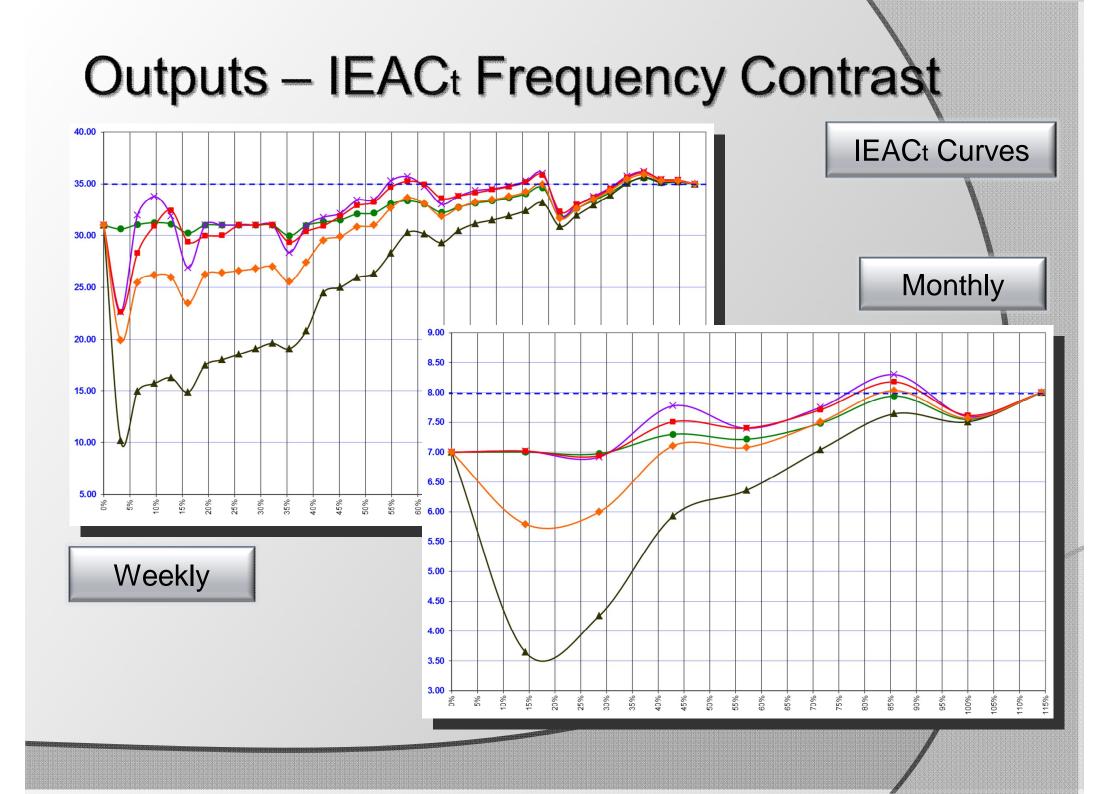
- Curve maintains good sensitivity to change
- Easier to manage updates

Monthly

- Smooth curve, good visual communicator
- Time scale did not fit well with short projects

Outputs – Forecasting Time


Methods


- Used earned schedule measures (IEACt)
- Formulas Henderson 2004 | Likpe et al 2009
- Checked 2011 PMI EVM Standard on release

Outcomes

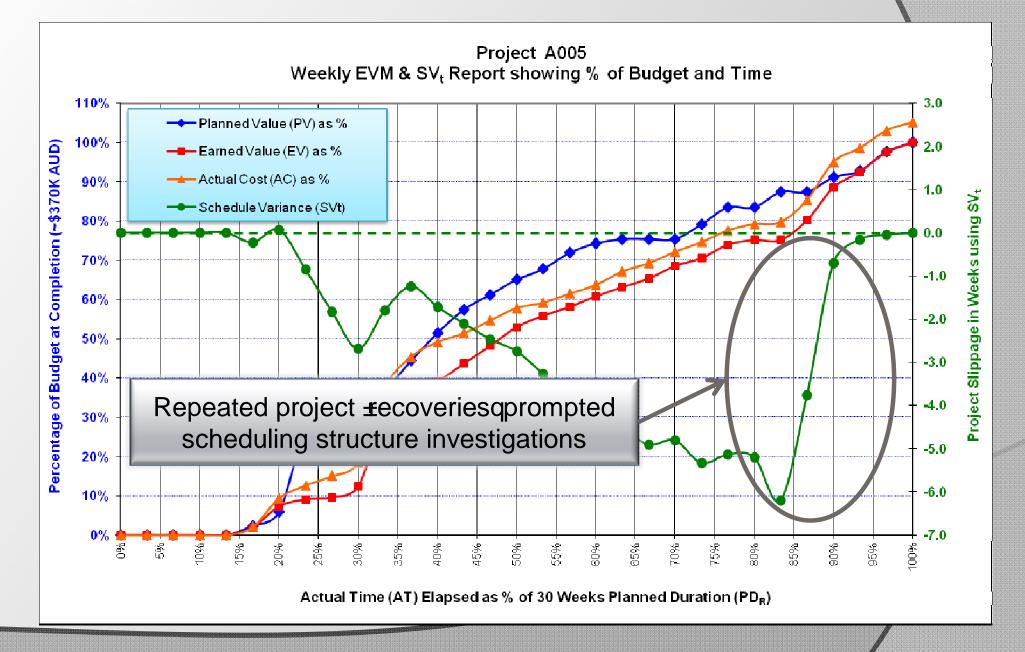
- Schedule orientated measures perform better
- Adding SVt x -1 to planned duration was effective
- Weekly frequency very sensitive, monthly better

Outputs – Forecasting Time Curves

3. Influences & Lessons

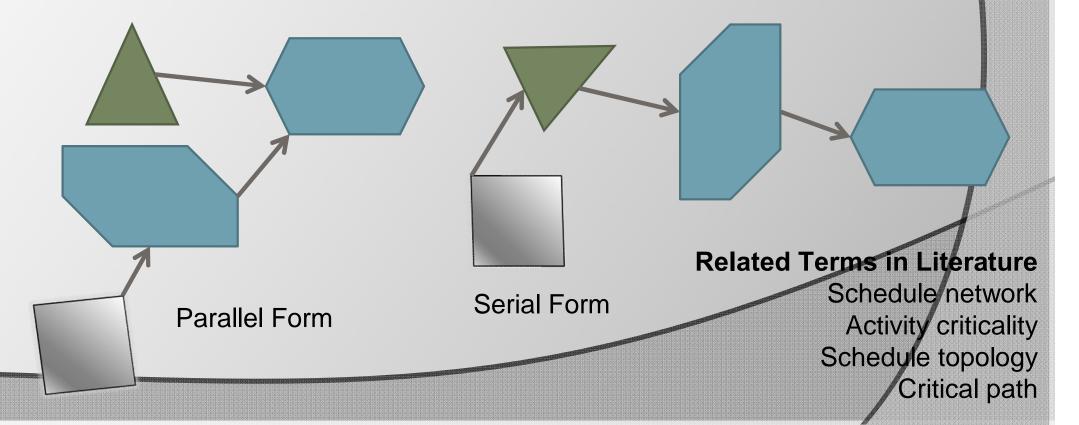
Observations . applying EVM

Scheduling . product geometry


Data streams . portfolio, capacity & profile

Observations – Applying EVM

Budget


- Detail is linked to processes & product content
- Good alignment helped fit EVM to the project
- Time Phase Budget (TPB)
 - Keep it simple \rightarrow enough detail to get a result
 - Material & services \rightarrow align the with budget
 - Labour activities → visual milestones
- Tracking
 - Capturing progress at time → critical to output
 - Simple labour EV measure → start, middle, end

Observation – Output Issues

Scheduling – The Geometry Impact

- Schedule structure
 - Accuracy is essential for EVM to perform well
 - Need to understand product & build sequence
 - Product geometry . impacted on application

Scheduling – Conversion to EV Curves

Ourve Data

- Sensitivity of curve → allocation & phasing values
- Assigning & phasing materials → apply caution
- Frequency → internal / external objectives

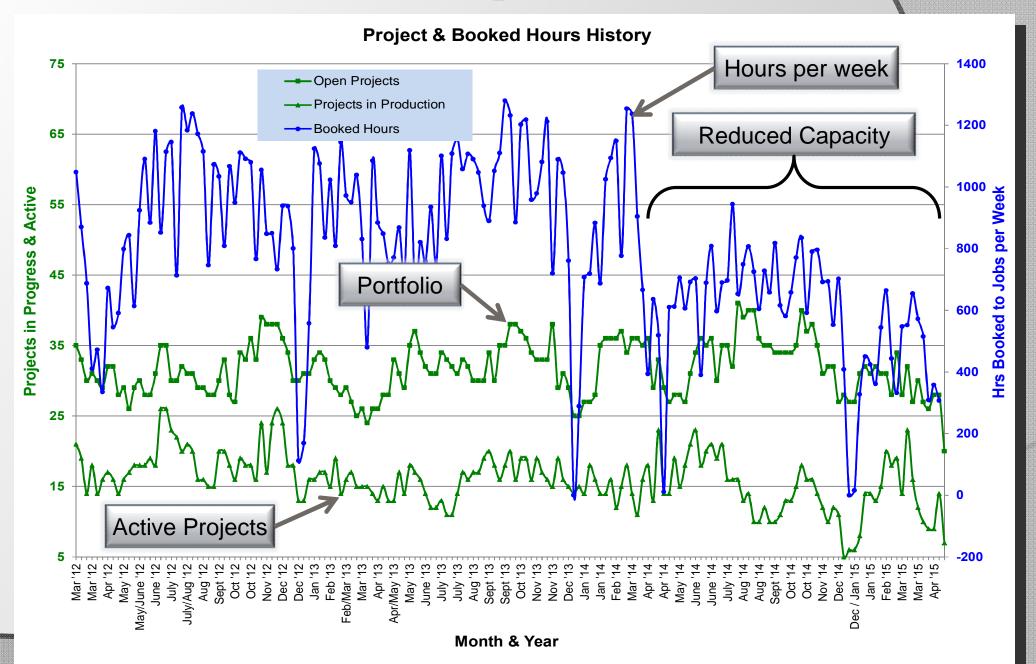
Ourve Response

- Performs well during manufacturing cycle
- Earned schedule method \rightarrow improved EVM use
- Projectos front end \rightarrow Needed critical path

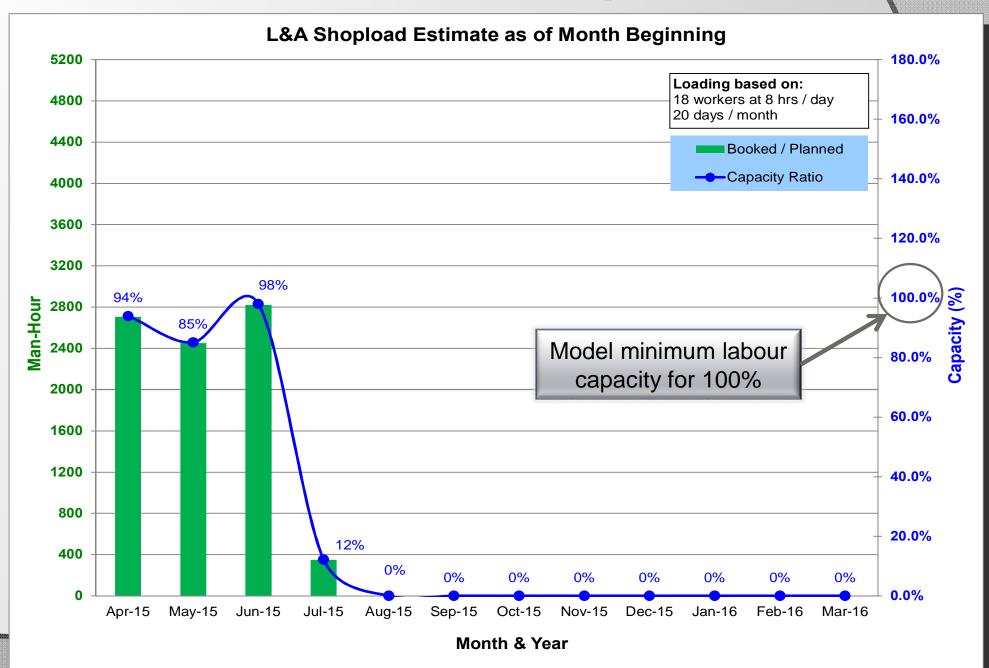
Data Streams – Extending Time Data

Extending EVM Data Feeds Extending EVM Data Extending EVM Extending EVM Data Extending EVM Extending EVM

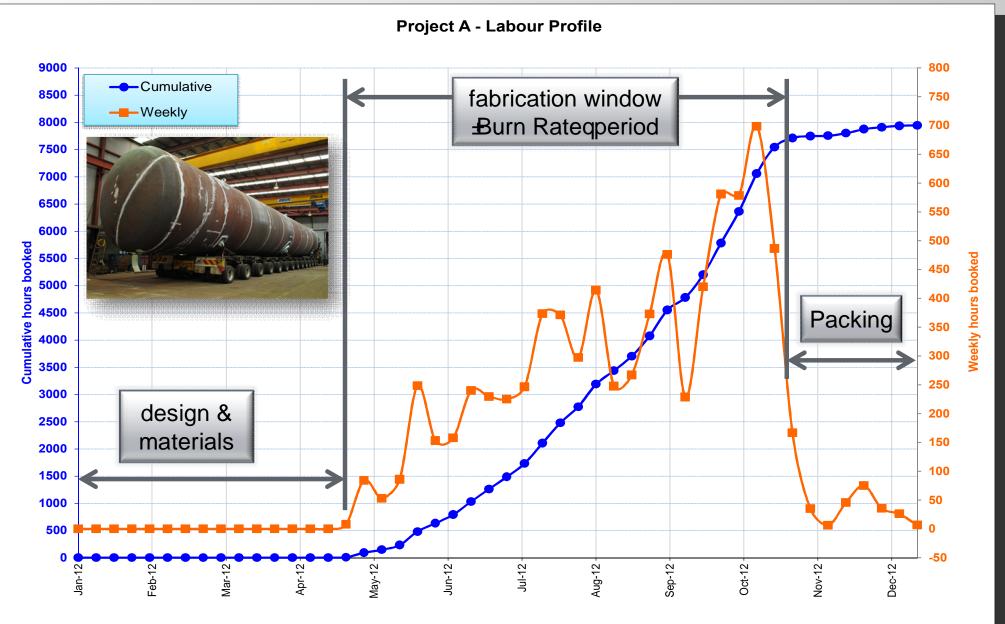
- Using hours in a periodqas an iperationsqtool
- Sum the labour effort across the portfolio
- Project burn rate indicator (taken from agile mgt.)


Project	Effort / Week
Project #1	$\Sigma \& \Delta$ hours
Project #2	$\Sigma \& \Delta$ hours
Project #3	$\Sigma \& \Delta$ hours

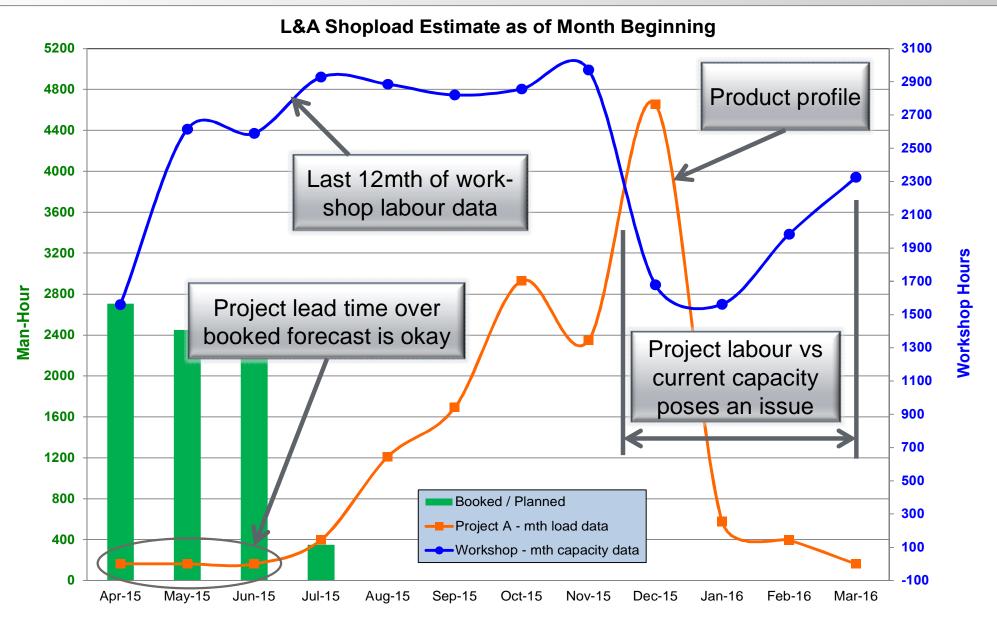
Capture the weekly time effort on every project to deliver portfolio capacity data


• Dataset outputs

- Organisation profile
- Capacity forecast
- Product profile


Data Streams – Organisation Profile

Data Streams – Capacity Forecast



Data Streams – Product / Project Profile

Reporting Date

Data Streams – Overlaying Data-Sets

Month & Year

4. Application Challenges & Future

- Establishing EVM . Challenges
 A
- Benefits . Rigor & dynamics
- EVMos future at L&A. Portfolio & risk

Establishing EVM – First Pass

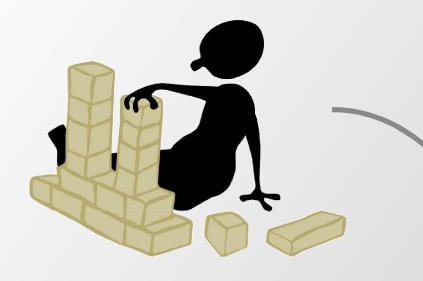
Foundation

- Data feed systems → project & business cases
- Implementation platform \rightarrow integrated or separate
- Budget & scheduling → rules of measure

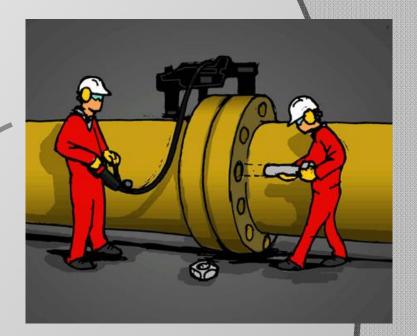
Alignment can be really hard to establish

Establishing EVM – Places to disagree

• Using EVM


- System rigidity → dealing with change
- Ownership \rightarrow nesting with functions, needs to help

Acceptance


- Simple in parts \rightarrow the ensemble is complicated
- Polarised views \rightarrow seek benefits then market it

Application can seem locked-up *t the idealistic 'island of order' may suddenly turn into an... 'iron cage' (Malgrati & Damiani cited in Williams 2003, p.21)*

Establishing EVM – Finding acceptance

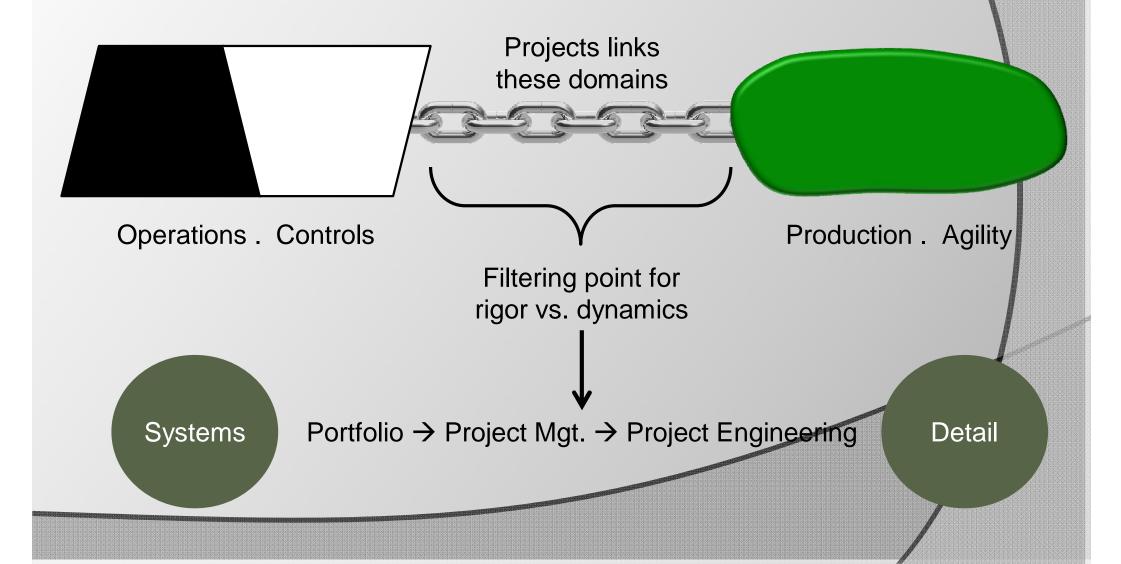
Sit down with it

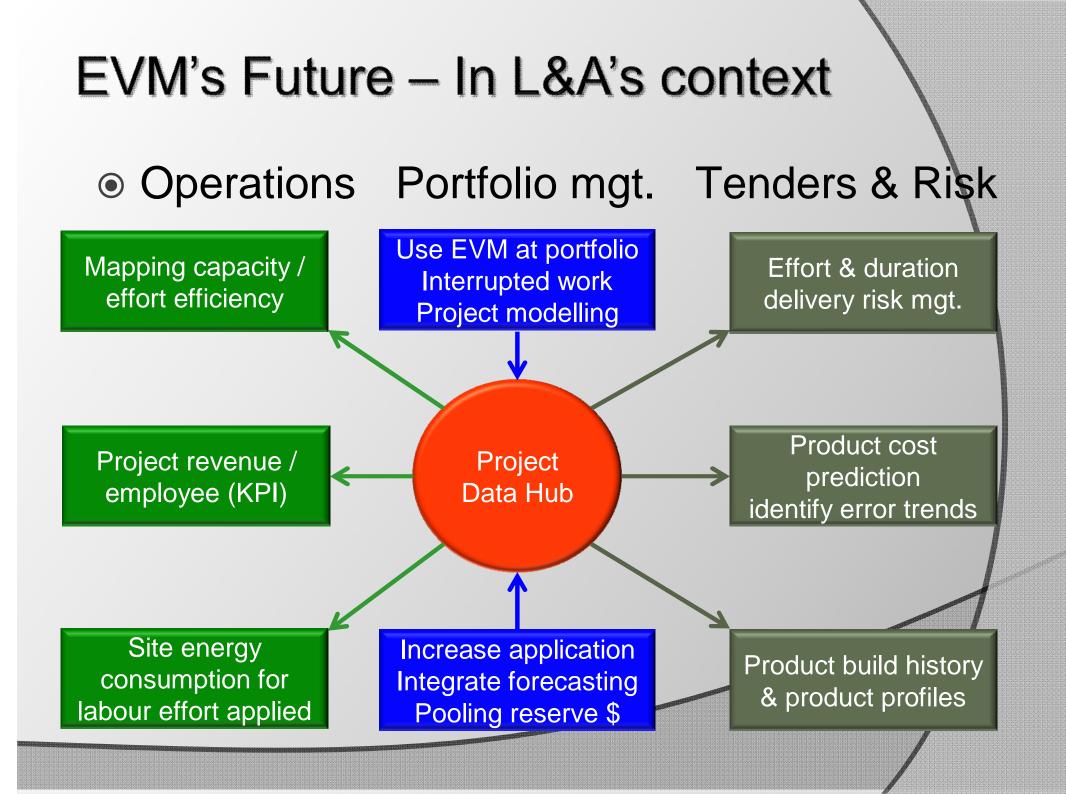
Seek out an alignment that works for the organisation

Learn to play - outside the prescription

Benefits – Extracting good from rigor

• EVM's thirst for data & order

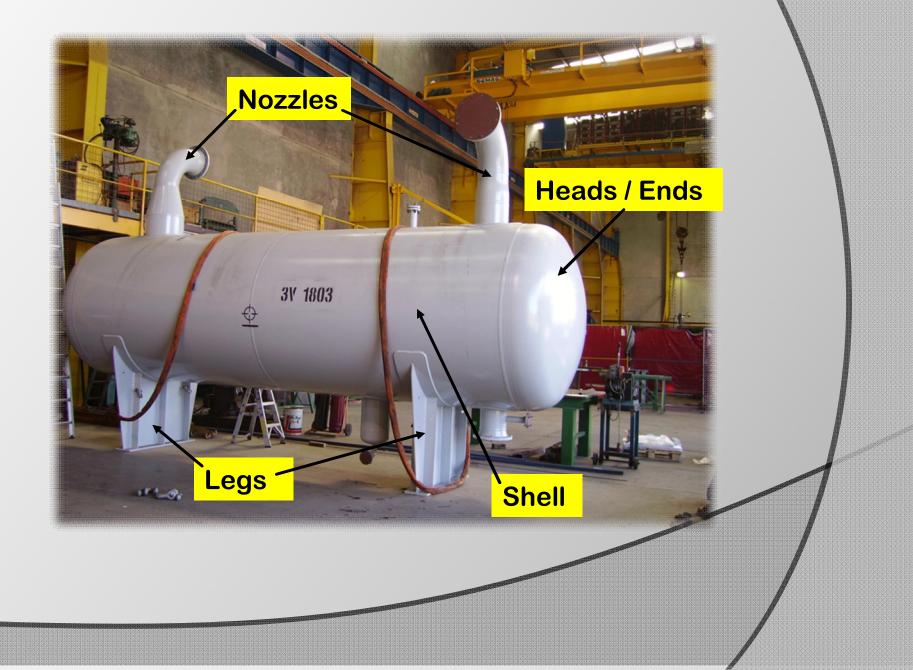

- Information \rightarrow focus on performance
- Budget \rightarrow setup audits the estimate
- Measuring \rightarrow requires effort early in planning


Our Project Mgt / Operational Systems

- Budget & early effort → supports design & buying
- Incoming data (rigid element) → feeds operations
- Data history → supports tendering / portfolio mgt

Benefits – Business Dynamics

EVM data currently used as support role



Contact Information

David Fox L&A Pressure Welding Pty Ltd, Sydney Email: <u>David@lapressure.com.au</u> Work: 02 9780 8000 Mobile: 0400 144 395 Personal: <u>dlfox@bigpond.com</u>

Appendix A - Example EV Application

Appendix A – Sample Budget

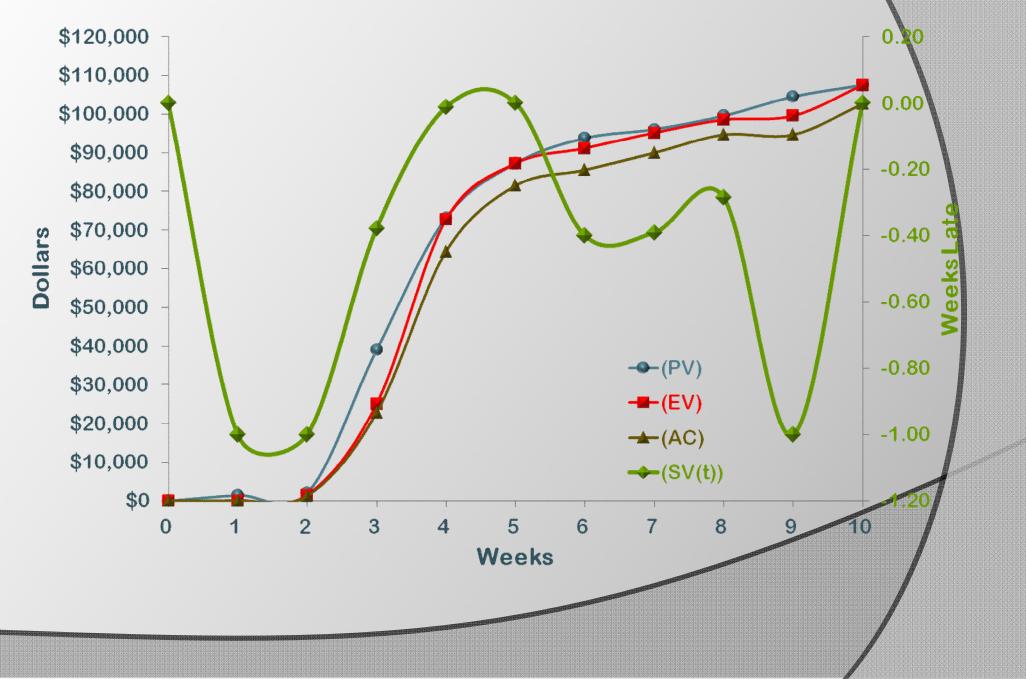
Activity	Cost \$	
Engineering – Calculations, Drafting, Acceptance	\$3,000	
Materials Delivery – Heads	\$30,000	
Materials Delivery – Shell	\$20,000	
Materials Delivery – Nozzles	\$12,000	
Materials Delivery – Legs	\$8,000	Authorised Project
Build & Test – Shell, end, nozzles, closing, legs	\$23,000	Budget
Build & Test – Testing	\$2,500	
Paint & Dispatch – Deliver to Painter & Site	\$3,000	
Paint & Dispatch – Painting	\$6,000	
Budget at Completion (BAC)	\$107,500	
Overheads	\$15,000	Reserves & Business
Management Reserve	\$3,800	Cost
Profit	\$1,900	
Project Budget	\$128,200	Total budget

Appendix A – Sample Schedule

fask Name	Duration			1.11	-						1						Dates for TPB
		W-4	W-3	W-		W1	W2	W3	VV4	W5	W6	W7	W8	W9	W10	W11	Dates IVI IFD
∃ Applying EV - Sample Project	9.4 wks	Appiyi	ng cv -	sampi	le Project										9.4	lwks	
🗆 1 Engineering	5.5 wks			Eng	gineering							5.5 wks					Engineering
🖃 1.1 Design	1 wk		1		Design		🔫 1 wk					1	1	1	1		Calculations – Week
1.1.1 Calculations	1 wk		1	Ca	lculations		26/05										
1.1.2 Submission	0 days				Subr	nission	•										Drafting – Week 2
🖃 1.2 Detailing	1 wk				D	etailing	-	🏓 1 wk									Acceptance – Week
1.2.1 Drafting	1 wk					Drafting	,	2/06									
1.2.2 Submission	0 days					Subr	nission	* 1				1					
1.3 Registeration	3.5 wks					Regist	teration	.				3.5 wks					Material Delivery
1.3.1 Verify	1.5 wks						Verify			14/06							Heads – Week 4
1.3.2 Submission	0 days							Submise	sion 🗳	1							
1.3.3 Acceptance	2 wks							Accept	ance 🗖		-2	8/06		. 4			Shell – Week 3
🖃 2 Buying	4 wks					Buying	-				🟓 4 wk	s					Nozzles -Week 3
2.1 Ordering	3 wks				0	rdering	-			💛 3 wk	s						Legs – Week 5
2.1.1 Heads	1 day					Heads	a <mark>27/05</mark>	5	1								Legs - Week J
2.1.2 Shell	1 day					Shel	0 [*] 27/05	1									
2.1.3 Nozzles	1 day						Nozzles	; 🖬 4/06		1	•						Build & Test
2.1.4 Legs	1 day								Legs	16/06							
2.2 Material Delivery	2.8 wks					Material	Delivery	-			2.8 w	ks					(Finish dates)
2.2.1 Heads	0 wks							Heads	•1							_	Shell – Week 4
2.2.2 Shell	0 wks						Shell	1									End – Week 4
2.2.3 Nozzles	0 wks						N	lozzles	♦								
2.2.4 Legs	0 days									Legs	ب						Nozzles – Week 6
🖃 3 Build & Test	5.5 wks					Buil	d & Test	-					-	5.5 wk	8		Closing end – Week
3.1 Roll Shell & weld	1 wk					Roll Sh	ell & weld	d 222222	222 10/06	5							
3.2 Fit end & weld	0.5 wks						Fit en	d & weld	1 2000	15/06							Legs – Week 7
3.3 Fit nozzles & weld	1.5 wks		1				Fit n	ozzles 8	weld 2		24/06				1		Testing – Week 8
3.4 Fit Closing end & weld	0.5 wks							Fit Clo	sing en	d & wel	1 22222	29/06					
3.5 Fit legs & weld	1 wk								F	it legs 8	weld 💈		6/07				Definit & Disc
3.6 Testing	1 wk										Te	sting 🖄		13/07			Paint & Dispatch
🖃 4 Paint & Dispatch	1.7 wks										Pair	nt & Disp	atch		1.7	wks	To painter - Week 8
4.1 Deliver to painter	1 day										Deli	ver to p	ainter 🛛	14/07			Print Wook 10
4.2 Paint	1.5 wks												Paint		23/0	07	Faint - WEEN ID
4.3 Deliver to site	0 days	[1	Deliv	er to site	e 🍑		To site – Neel 10

Appendix A - Time Phase Budget

Project Weeks ∑ for ∑ for Row Activities from WBS 0 2 3 5 6 7 8 9 10 Δ Activities \$3.000 Engineering \$1,500 \$1,5000 Calculations Drafting \$500 \$500 \$1,000 \$1,000 Acceptance \$70,000 Material Deliverv \$30,000 Heads \$30.000 \$20,000 Shell 20,000 PVcs from authorised budget are 2,000 Nozzle \$12,000 \$8,000 \$8,000 assigned a time interval according Legs **Build & Test** to the schedule: % of Build & Test - Shell, end, \$25,500.00 "Engineering . Acceptance Week nozzle... \$23,000 allowance \$5,750 Roll shell & weld (25%) \$5,000 \$750 6 \$3,450 \$3,450 Fit end & weld (15%) PV values are Material Delivery . Heads Week 4 \$6,900 Fit nozzles & weld (30%) \$6.000 added to EV when Fit closing end & weld (20%) \$4.600 \$4.600 \$2.300 Fit leg & weld (10%) \$2.300 they occur Actual values; cost \$2,500 \$2,500 Testing Paint & Dispatch \$9.000 and when they Delivery to Painter \$1,000 \$1,000 occur are added \$6,000 \$1,000 Paint \$5,000 \$2,000 Delivery to Site \$2,000 Fortnightly Planned Value (PV) \$0 \$500 \$37,000 \$34.200 \$14,000 \$6.500 \$3.500 \$107.500 \$1.500 \$2.300 \$5.000 \$3.000 TPB BAC Performance Measurement \$0 \$39.000 \$73.200 \$87.200 \$104.500 \$107 500 Project BAC \$1.500 \$2,000 \$93,700 \$96.000 \$99.500 \$107.500 Baseline (PMB) Actual Labour Cost \$24,675Total Labour \$0 \$0 \$0 \$3,000 \$7,525 \$4,100 \$3,200 \$1,100 \$5,750 \$0 Actual Material Cost \$0 \$0 \$1,200 \$18,500 \$36,000 \$9,500 \$1,200 \$3,600 \$0 \$78,000 Total Mat \$8,000 \$0 \$23,500 \$14,450 \$3,400 \$0 \$1,500 \$1.000 Earned Value (EV) \$47.750 \$3,900 \$4.000 \$8.000 \$107.500Total EV \$102.675Total Cost Reporting date for the period 8 Q 10 0 3 5


Time Phase Budget - Sample Project

Appendix A – Curve Data, Reference

				Cumulativ	e Perform	ance					λ		
Treaking Toolo	Project Weeks												
Tracking Tools	0	1	2	3	4	5	6	7	8	9	10		
Planned Value (PV)	\$0	\$1,500	\$2,000	\$39,000	\$73,200	\$87,200	\$93,700	\$96,000	\$99,500	\$104,500	\$107,500		
Earned Value (EV)	\$0	\$0	\$1,500	\$25,000	\$72,750	\$87,200	\$91,100	\$95,100	\$98,500	\$99,500	\$107,500		
Actual Value (AC)	\$0	\$0	\$1,200	\$22,700	\$64,450	\$81,475	\$85,575	\$89,975	\$94,675	\$94,675	\$102,675		

		Earned V	alue & Ea	rned Sche	dule Perfo	rmance M	easureme	nts			
Magaziramant Tagla					Р	roject Weel	ks				
Measurement Tools	0	1	2	3	4	5	6	7	8	9	10
Cost Variance (CV = EV - AC)	\$0	\$0	\$300	\$2,300	\$8,300	\$5,725	\$5,525	\$5,125	\$3,825	\$4,825	\$4,825
Schedule Variance (SV = EV - PV)	\$0	-\$1,500	-\$500	-\$14,000	-\$450	\$0	-\$2,600	-\$900	-\$1,000	-\$5,000	\$0
Earned Schedule Actual Time (AT)	0	1	2	3	4	5	6	7	8	9	10
Whole Time Increment of PMB (C = AT for EV >= PV)	0	0	1	2	3	5	5	6	7	8	10
Numerator portion of PMB increment earned (I _N = (EV _{AT} - PV _C)	\$0	\$0	\$0	\$23,000	\$33,750	\$0	\$3,900	\$1,400	\$2,500	\$0	\$0
Denominator portion of PMB increment earned I _D = (PV _{C+1} - PV _C)	\$1,500	\$1,500	\$500	\$37,000	\$34,200	\$6,500	\$6,500	\$2,300	\$3,500	\$5,000	-\$107,500
Earned Schedule (ES = C + I_N/I_D)	0.00	0.00	1.00	2.62	3.99	5.00	5.60	6.61	7.71	8.00	10.00
Schedule Variance (time) (SV _(t) = ES - AT)	0.00	-1.00	-1.00	-0.38	-0.01	0.00	-0.40	-0.39	-0.29	1.00	0.00
Schedule Performance Index (time), (SPI _(t) = ES/AT)	1.00	0.00	0.50	0.87	1.00	1.00	0.93	0.94	0.96	0.89	1.00

Appendix A – Curve Sample

Appendix B – IEACt, Curve formula

 Forecast of AD (fortnights) Simple Form IEACSVt = PDR + (SVt x -1)

Forecast of AD (fortnights) Short Form equ IEACt = PDR / SPIt

Forecast of AD (fortnights) Long Form PF = i,j,k (BM) IEACt,i,j,k = AT + [(PDR - ES) / ((ESi + ESj + ESk) / (ATi + ATj + ATk))]

Forecast of AD (fortnights) Long Form PF = product of CPI & SPIt IEACt,IP = AT + [(PDR - ES) / (CPI x SPIt)]

Forecast of AD (fortnights) Long Form PF = sum of CPI & SPIt factored (variable) IEACt,IF = AT + [(PDR - ES) / (CPIf*CPI + SPIf*SPIt)]