

Public sector governance

- Central governments, as the primary funding entity, have a desire that major projects should attend to the needs of society, and that the projects that result in greatest benefits should have priority
- Central governments generally don't deliver projects themselves: the objective is to pave the way for structured and effective preparation and implementation through

High-level cost estimation requirements

- Probabilistic cost estimates are required for projects greater than \$25 million P90 Outturn
- Road projects should be outturned using escalation rates embedded within the Project Cost Breakdown (PCB) template
- Refer to and follow the Department's cost estimation guidance
- Revised estimates are expected for each phase (not applicable if two or more phases are combined)

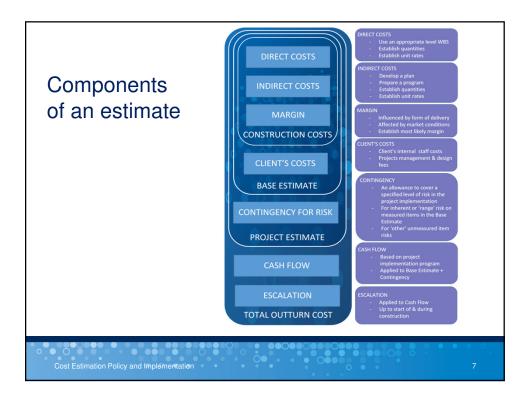
Cost Estimation Policy and Implementation

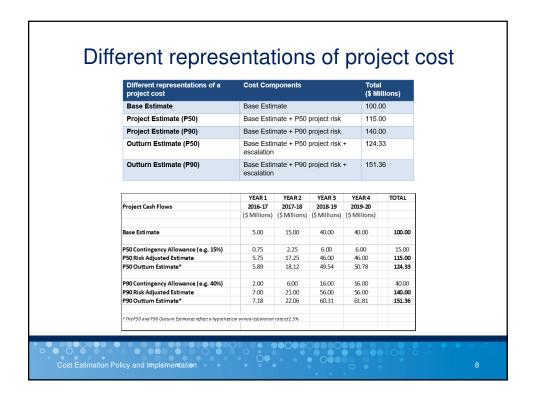
5

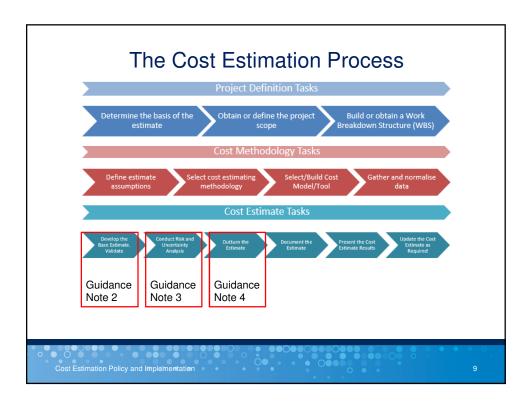
Cost Estimation Guidance

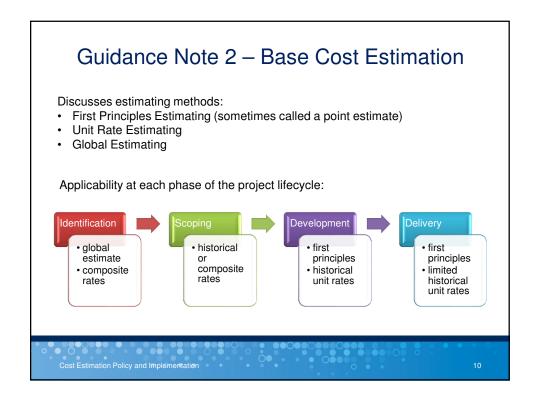
The full suite consisting of six components comprises:

- **≻**Overview
- >1: Project Scope
- ▶2: Base Cost Estimation
- ➤3A: Probabilistic Contingency Estimation
 - ➤ Supplementary guidance
- ➤ 3B: Deterministic Contingency Estimation
- ▶4: Escalation

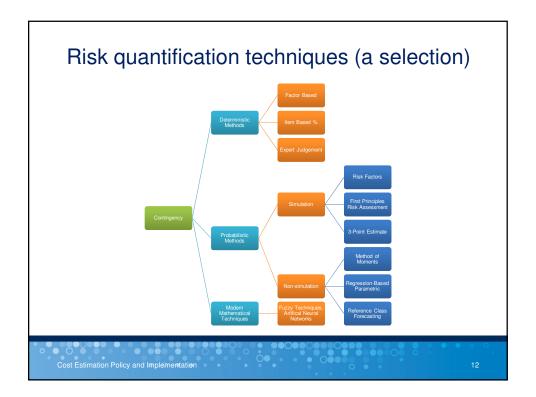







Downloadable at https://investment.infrastructure.gov.au/about/funding_and_finance/cost_estimation_guidance.aspx

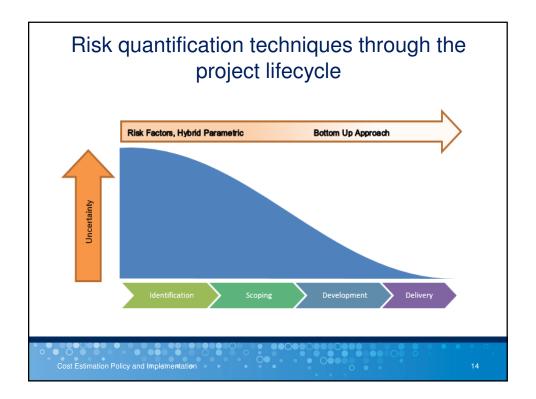
ost Estimation Policy and Implementation



Contingency

Current Departmental policy:

- Probabilistic estimates for projects > \$25 million
- Deterministic estimates for projects < \$25 million
- Because there are no "standards" as such for cost estimation/risk quantification (in the same way there are Australian Standards for engineering designs), it is important that the Department provide robust guidance


Cost Estimation Policy and Implementation

Guidance Notes 3A and 3B

- · 3B Deterministic contingency estimation
 - Techniques for assessing and quantifying uncertainty on lower value projects
 - Example template on website
- · 3A Probabilistic contingency estimation
 - Three different techniques explained
 - Assessed using Monte Carlo simulation
 - Theory and background provided with Supplementary Guidance

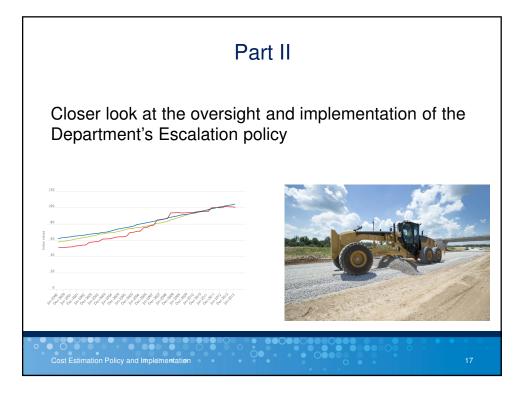
Cost Estimation Policy and Implementation

A number of worked examples appear throughout the text with working models also available for download from the website:

Guidance notes

The cost estimation guidance, published following a thorough public consultation process, comprises the following key components which are available for download:

- Guidance Note Overview, Version 1.0, August 2018 PDF: 1.6 MB
- Guidance Note 1 Project Scope, Version 1.0, March 2017 PDF: 354 KB
- Guidance Note 2 Base Cost Estimation, Version 1.0, March 2017 PDF: 514 KB
- Guidance Note 3A Probabilistic Contingency Estimation, Version 1.0, November 2018 PDF:
 2.5 MB
- Guidance Note 3A Supplementary Guidance, Version 1.0, November 2018 PDF: 4.6 MB
 - Risk Factor model 1 XLSX: 84 KB
 - Risk Factor model 2 XLSX: 96 KB
 - Risk Factor model 3 XLSX: 129 KB
 - Risk Factor model 4XLSX: 92 KB
- Guidance Note 3B Deterministic Contingency Estimation, Version 1.0, August 2018 PDF:
 1.4 MB
 - Range based model XLSX: 870 KB
- Guidance Note 4 Escalation, Version 1.0, November 2018 PDF: 1.4 MB


Cost Estimation Policy and Implementation

15

Technical policy/guidance - considerations

- Regulations and guidelines can be an impediment to creative thinking
- If every analyst had their own individual model, it would be impossible to ensure any quality standard
- To maintain consistency you could fill in a template of three-point estimates with standard ranges
- But templates and set ranges ensure that the standard of analysis is very low
- Risk analysis is not a packaged commodity
- Each project is unique (although likely to have commonalities)
- Policy should allow for flexibility within a core set of theoretically sound assumptions

ost Estimation Policy and Implementation

Escalation policy - background

- Choice of escalation rate can be a major driver of the outturn estimate for a multi-year project
- Prior to 2015 jurisdictions submitting funding proposals were free to nominate their own escalation rates
- Justifiably, it was felt that rates being nominated at the time (6% per annum or more) were unrealistic in a deflationary environment
- No consistency between jurisdictions
 - Equity and transparency is important where there is competition between delivery agencies for scarce public funds

Cost Estimation Policy and Implementation

Escalation policy - development

- In 2014/15 the Department embarked on a significant journey of escalation policy development
- · Development is ongoing

Aim:

- Develop a composite index series using an appropriate weighting of each input for a typical road construction project
- Provide a logically built, jurisdiction-specific escalation series for road construction projects
 - Convert cost estimates, developed in today's dollars, into outturn dollars for budgetary purposes

Cost Estimation Policy and Implementation

19

Principles of an index series

- I. Provide robust estimates of movements in actual costs (materials, labour, profit margins) for road construction
- II. Be available for all Australian jurisdictions
- III. Be based on sound, logical and transparent foundations
- Can be calculated using regularly published and publicly available data
- V. Recognise costs borne by jurisdictions outside of the construction process itself

Cost Estimation Policy and Implementation

Component weights for road construction projects

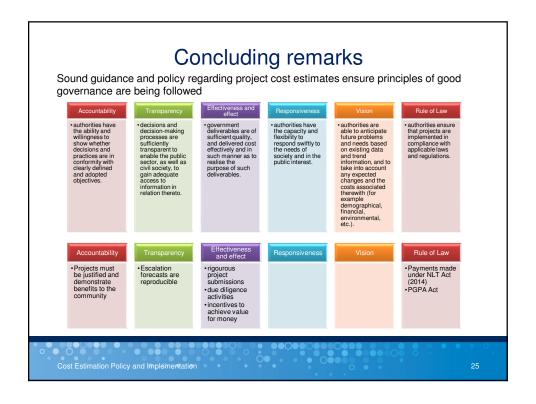
Component	Weight
Construction Wages	29%
Engineering Design & Consulting Services	14%
Plant & Equipment Hire	14%
Concrete, Cement & Sand	22%
Bitumen	12%
Diesel	4%
Reinforcing Steel	6%
Project Base Cost	100%

Cost Estimation Policy and Implementation

21

Escalation Forecasts


- Forecasts for inputs consider a number of factors:
 - Enterprise bargaining agreements
 - Supply/demand for materials across the construction sector more broadly
 - Commodity prices (iron ore, oil)
 - Exchange rates
 - Overall level of aggregate demand (market conditions) within the economy to predict contractor margins
 - Changes in technology and general industry-wide productivity


ost Estimation Policy and Implementation

Implementation

- Department engages BIS Oxford Economics to update forecasts (for the next seven years) on an annual basis
- Jurisdictions are provided with rates and accompanying narrative for comment before forecasts are finalised (collaborative approach)
- A template is provided with escalation rates embedded
 - Outturn estimate is automatically calculated from the project cashflow

Cost Estimation Policy and Implementation

